首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CO2-, H2O- and 16O2/18O2 isotopic-gas exchange and the fluorescencequenching by attached leaves of the wild-type and of the phytochrome-deficienttomato aurea mutant was compared in relation to water stressand the photon fluence rate. The chlorophyll content of aurealeaves was reduced and the ultra-structure of the chloroplastswas altered. Nevertheless, the maximum rate of net CO2 uptakein air by the yellow-green leaves of the aurea mutant was similarto that by the dark-green wild-type leaves. However, less O2was produced by the leaves of the aurea mutant than by leavesof the wild-type. This result indicates a reduced rate of photosyntheticelectron flux in aurea mutant leaves. No difference in bothphotochemical and non-photochemical fluorescence quenching wasfound between wild-type and aurea mutant leaves. Water stresswas correlated with a reversible decrease in the rates of bothnet CO2 uptake and transpiration by wild-type and aurea mutantleaves. The rate of gross 16O2 evolution by both wild-type andaurea mutant leaves was fairly unaffected by water stress. Thisresult shows that in both wild-type and aurea leaves, the photochemicalprocesses are highly resistant to water stress. The rate ofgross 18O2 uptake by wild-type leaves increased during waterstress when the photon fluence rate was high. Under the sameconditions, the rate of gross 18O2 uptake by aurea mutant leavesremained unchanged. The physiological significane of this differencewith respect to the (presumed) importance of oxygen reductionin photoprotection is discussed. Key words: Water stress, gas exchange, fluorescence quenching, Lycopersicon esculentum, mutant (tomato, aurea), energy dissipation  相似文献   

2.
Cyclopenin (C17H14O3N2) and cyclopenol (C17H14O4N2), isolatedfrom an abberent strain of Penicillium cyclopium (NRRL 6233),significantly inhibited the growth of etiolated wheat (Triticumaestivum) coleoptile segments. The former inhibited at 10–3and 10–4 M, the latter at 10–3 M. Cyclopenin producedmalformation of the first set of trifoliate leaves in bean (Phaseolusvulgaris) at 10–2 M and necrosis and stunting in corn(Zea mays) at 10–2 M. Cyclopenol induced no apparent effectsin bean or corn plants. Neither compound changed the growthor morphology of tobacco (Nicotiana tabacum) plants. Cyclopenininduced intoxication, prostration and ataxia in day-old chicksat 500 mg/kg, but they recovered within 18 hours. Cyclopenolwas inactive against chicks when dosed at levels up to 500 mg/kg. (Received October 11, 1983; Accepted December 15, 1983)  相似文献   

3.
Carbohydrate accumulation in young, fully expanded leaves ofCitrus sinensis L. Osbeck is affected by the presence of thefruitlet on the shoot. Previous work gave evidence that gibberellinsmay be involved in this 'fruit effect'. In the present workwe have studied the effect of gibberellic acid (GA3) on 14C-sucroseuptake by leaf discs and whether its action could be due toa modulation of the plasma membrane ATPase, which maintainsthe H+ gradient that drives H+/sucrose co-transport. The effect of GA3 on 14C-sucrose uptake depended on the osmolarityof the assay medium. At 300 mOsm a reduction in the uptake ratewas observed. The inhibitory effect of the hormone disappearedafter preincubating the leaf discs with para-chloromercuri-phenylsulphonicacid (PCMPS), a sulphydril binding inhibitor. ATPase activityof isolated plasma membrane vesicles was inhibited by IAA treatments,while GA3 or ABA did not affect this enzyme, even after a 3h preincubation period. However, in the absence of a surfactantin the assay medium, GA3, together with turgor pressure, modulatedplasma membrane ATPase activity, possibly through modificationsof membrane permeability. The hormone effect on 14 C-sucroseuptake may involve action on the sucrose carrier.Copyright 1994,1999 Academic Press Abscisic acid, Citrus sinensis, gibberellic acid, indoleacetic acid, orange, osmotic pressure, plasma membrane ATPase, 14C-sucrose uptake  相似文献   

4.
The influence of a water stress or foliar ABA spraying pretreatmenton stomatal responses to water loss, exogenous ABA, IAA, Ca2+,and CO2 were studied using excised leaves of Solanum melongena.Both pretreatments increased stomatal sensitivity of water loss,in the presence and absence of CO2, but decreased stomatal sensitivityto exogenous ABA. CO2 greatly reduced the effect of exogenouslyapplied ABA. IAA decreased leaf diffusion resistance for controland ABA sprayed leaves, but did not influence the LDR of previouslywater-stressed leaves. CA2+ did not influence LDR of any leavesof any treatments. Key words: Water stress, stomatal response, pretreatments  相似文献   

5.
The light-dependent production of hydroxyl radicals (HO{dot})by thylakoids, chloroplasts and leaves of Spinacia oleraceawas investigated using dimethylsulfoxide as HO{dot} trappingagent. Maximum rates of HO{dot} production by thylakoids asindicated by the formation of methane sulfinic acid were observedunder aerobic conditions in the absence of added electron acceptors.They were higher than 2 µmol (mg Chl h)–1. Saturationof HO{dot} production occurred at the low photon flux densityof 100 µmol m–2 s–1. Trapping of HO{dot} bydimethylsulfoxide suppressed, but did not eliminate light-dependentinactivation of PSI and II suggesting that HO{dot} formationcontributed to the photosensitivity of isolated thylakoids.DCMU inhibited HO{dot} formation. Importantly, methylviologendecreased HO{dot} formation in the absence, but stimulated itin the presence of Fe3+. In intact chloroplasts, HO{dot} formation became appreciableonly after KCN had been added to inhibit effective H2O2 scavengingby ascorbate peroxidase. It was stimulated by ferrisulfate,but not by ferricyanide which does not penetrate the chloroplastenvelope. Infiltrated spinach leaves behaved similar in principleto intact chloroplasts in regard to HO{dot} formation but HO{dot}production was very slow if detectable at all by the formationof methylsulfinic acid indicating effective radical detoxification. HO{dot} formation is interpreted to be the result of a Fenton-typereaction which produces HO{dot} in chloroplasts from H2O2 andreduced ferredoxin, when O2 is electron acceptor in the Mehlerreaction and radical detoxification reactions are inhibited. (Received November 13, 1996; Accepted April 23, 1996)  相似文献   

6.
The rate of indole-3-butyric acid (IBA) synthesis in maize seedlingsis dependent on the culture conditions of the plants. When theseedlings were grown on filter paper soaked with different amountsof water, the activity of IBA synthetase differed strongly.High amounts of water (150 and 200 ml per bowl) inhibited IBAsynthesis completely in vitro, whereas 30 and 50 ml water perbowl increased the activity dramatically. Under conditions whereIBA synthetase was inhibited (150 ml H2O), an increase of enzymeactivity was observed when abscisic acid (ABA) was exogenouslyadded in concentrations between 510–4 to 510–7M. Under ‘drought’ conditions (50 ml H2O per bowl)the same ABA concentrations were inhibitory. Jasmonic acid andsalicylic acid also enhanced IBA synthetase activity to someextent, whereas indole-3-acetic acid (IAA) and kinetin had noeffect. Activity could also be enhanced by osmotic stress (NaCIand sorbitol), but not under temperature stress. In accompanyinginvestigations the endogenous contents of IAA, IBA, and ABAunder the different culture conditions have been determinedas well as the energy charge of the seedlings. Similar observationshave been made with Amaranthus, wheat and pea seedlings Key words: Abscisic acid, Amaranthus paniculatus, drought stress, inole-3-butyric acid biosynthesis, Pisum sativum, Triticum aestivum, Zea mays  相似文献   

7.
活性氧在UV-B诱导的玉米幼苗叶片乙烯产生中的作用   总被引:3,自引:0,他引:3       下载免费PDF全文
 研究了活性氧在UV-B(280~320 nm)诱导的玉米(Zea mays)幼苗叶片乙烯合成中的作用。结果表明,UV-B促进了玉米幼苗活性氧和乙烯的产生;乙 烯合成抑制剂氨氧乙烯基甘氨酸 (AVG)和氨氧乙酸(AOA)能明显减弱UV-B对玉米幼苗乙烯产生的诱导作用,但对活性氧(ROS)的 产生没有明显影 响;ROS的清除剂不但能抑制UV-B诱导的 ROS的产生,而且还可以抑制UV_B诱导的乙烯的产生,但这种抑制作用可以被外源O2.-的供体所逆转。这 说明,乙烯的积累不能作为UV-B胁迫下ROS的诱导的因素,相反,ROS的积累则导致了乙烯的积累;因此,ROS可能参与了UV-B胁迫诱导的乙烯的产生 。质膜NADPH氧化酶的抑制剂二苯碘鎓(DPI)和H2O2的特异性清除剂过氧化氢酶(CAT)对UV-B胁迫诱导的乙烯积累 几乎没有影响, 这说明H2O2 可能与UV-B诱导的玉米幼苗叶片乙烯的产生无关, 在UV-B诱导的玉米幼苗叶片乙烯的生物合成过程中O2.-起着很重要的作用,相关的O2.-不是由 NADPH氧化酶催化产生的。  相似文献   

8.
Leaves from in vitro and greenhouse cultured plants of Malusdomestica (Borkh.) cv. Mark were subjected to 4 h of darkness;4 h of 1 M mannitol induced water stress; 1 h of 10–4M to 10–7 M cis-trans abscisic acid (ABA) treatment; 1h of 0.12% atmospheric CO2. Stomatal closure was determinedby microscopic examination of leaf imprints. In all treatments,less than 5% of the stomata from leaves of in vitro culturedplants were closed. The diameter of open stomata on leaves fromin vitro culture remained at 8 µm. In contrast, an averageof 96% of the stomata on leaves of greenhouse grown plants wereclosed after 4 h in darkness; 56% after 4 h of mannitol inducedwater stress; 90% after 1 h of 10–4 M ABA treatment; 61%after 1 h in an atmosphere of 0.12% CO2. Stomata of in vitroapple leaves did not seem to have a closure mechanism, but acquiredone during acclimatization to the greenhouse environment. Thelack of stomatal closure in in vitro plants was the main causeof rapid water loss during transfer to low relative humidity.  相似文献   

9.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

10.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

11.
H+ translocation driven by NO3, NO2 and N2O reductionswith endogenous substrates in cells of Rhodopseudomonas sphaeroidesforma sp. denitrificans was investigated by the oxidant pulsemethod. Upon injection of nitrogenous oxides to anaerobic cellsin darkness, an alkaline transient in the external medium wasobserved, followed by acidification. The alkaline transientwas enhanced by carbonyl cyanide m-chlorophenylhydrazone. When a viologen dye was used as an electron donor in the presenceof 1 mM Af-ethylmaleimide and 0.1 mM 2-n-heptyl-4-hydroxyquinoline-N-oxideto preclude respiration-linked H+ extrusion, addition of KNO3,KNO2 and N2O caused only a rapid alkalinization. The H+ consumptionstoichiometries, H+/2e ratios for NO3 reductionto NO2, NO2 reduction to 1/2 N2O and N2O reductionto N2 were –1.90, –3.18 and –2.04, respectively.These values agreed well with the fact that all reductions ofnitrogenous oxides in denitrification occur on the periplasmicside of the cytoplasmic membrane. When corrected for H+ consumption in the periplasm, the H+ extrusionstoichiometries, H+/2e ratios with endogenous substratesin the presence of K+/valinomycin for NO3 reduction toNO2, NO2 reduction to 1/2 N2O and N2O reductionto N2 were 4.05, 4.95 and 6.01, respectively. (Received August 4, 1982; Accepted January 13, 1983)  相似文献   

12.
 为了比较C4荒漠植物猪毛菜(Salsola collina)和木本猪毛菜(S. arbuscula)的抗旱结构和适应环境的光合作用特征, 在二者混生的群落中, 选择代表性植株, 采集叶片进行叶片解剖结构分析, 在自然条件下测定了二者叶片的气体交换参数。研究结果表明:猪毛菜叶片具表皮毛, 具有更发达的薄壁贮水组织;木本猪毛菜叶片具有更厚的角质层, 表皮下有1层下皮细胞, 其栅栏组织细胞较长, 排列更紧密。猪毛菜的净光合速率明显高于木本猪毛菜, 日平均值分别为21.5和15.7 μmol CO2·m–2·s–1。猪毛菜的蒸腾速率也明显高于木本猪毛菜, 日平均值分别为14.9和10.2 mmol·m–2·s–1。猪毛菜和木本猪毛菜的水分利用效率的日平均值分别为1.39和1.53 μmol CO2·mmol–1 H2O, 特别是在14:00时分别为1.61和2.30 μmol CO2·mmol–1 H2O, 木本猪毛菜高出猪毛菜约42%。猪毛菜的光补偿点低于木本猪毛菜, 而光饱和点和光量子效率较高, 具有更低的CO2补偿点。这表明:二者的旱生结构不同, 木本猪毛菜具有更显著的荒漠植物特征;在适于二者混生的环境下, 猪毛菜比木本猪毛菜的光合能力更强, 而木本猪毛菜的水分利用效率更高。  相似文献   

13.
Factors concerning the chloroplast disposition in bundle sheathcells were investigated in finger millet (Eleusine coracanaGaertn.), and NAD malic enzyme type C4 plant with the centripetalarrangement of bundle sheath chloroplasts. Segments were cutfrom immature regions of emerging leaves in which the centripetalarrangement of bundle sheath chloroplasts had not yet been established.The leaf segments were floated on solutions with or withoutreagents. Sections were made of the segments at time intervalsand the distribution of bundle sheath chloroplasts was observedby light microscopy. The bundle sheath chloroplasts migratedto the vascular bundle and established a centripetal arrangementby 12-16 h in control solutions. Auxins, cycloheximide and cytochalasinB inhibited the disposition of bundle sheath chloroplasts whilechloramphenicol and colchicine had no effect. The inhibitoryeffect of auxins appeared only at early stages of chloroplastmigration while cycloheximide and cytochalasin B were effectiveeven at later stages. Cessation of elongation growth, cytoplasmicprotein synthesis and microfilaments seemed to be associatedwith the centripetal disposition of bundle sheath chloroplasts.Copyright1993, 1999 Academic Press Bundle sheath chloroplast, C4 plant, chloroplast orientation, Eleusine coracana, finger millet  相似文献   

14.
A technique which measures the change in 2-3H content of proteinwith time by racemization of the protein hydrolysate with aceticanhydride was employed to measure protein turnover in the primaryleaves of Phaseolus vulgaris var. The Prince. Plants were grownin liquid culture and the radioactivity was introduced throughthe roots in the form of tritiated water. Substantial quantitiesof 1H2O (1 mCi ml1), a 48 h exposure to 3H2O, togetherwith detopping of the plant (which stimulates resumption ofprotein synthesis as shown by a 3-fold increase, over normalplants, in 3H incorporated into different protein fractionsin the 24 h immediately following detopping) were required toobtain manageable amounts of label incorporated into matureleaves. Under these particular conditions the half-life, thetime required for half the protein molecules initially presentto be degraded, of chloroplast coupling factor (CF1) was estimatedas 1.53 d, of a total soluble protein fraction (TSP) as 1.9d, and of a chloroplast lamellae fraction as 7.65 d.  相似文献   

15.
The relationship between plant water status and distributionof 14C-labelled assimilates in cacao (Theobroma cacao L.) wasevaluated after 14CO2 pulse labelling leaves of seedlings subjectedto varying levels of water deficiency. The proportion of 14Cexported by source leaves was strongly affected by seedlingwater status. An increasing proportion of labelled assimilatesremained in source leaves at both 24-h and 72-h harvests aswater stress intensity increased. Water stress reduced the distributionof exported label to leaves and to the expanding flush in particularbut increased the proportion of label in stems and roots. Theresults suggest that current photoassimilates may be temporarilystored in source leaves and stems of cacao seedlings duringperiods of plant water deficit. The stress-induced changes inpartitioning of labelled carbon were in concordance with changesin shoot to root biomass ratios, which was likely due to greaterreduction in growth of above-ground organs to that of roots. Theobroma cacao L, assimilate partitioning, cacao, 14C-photoassimilate, water stress, water potential  相似文献   

16.
Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells. apoptosis; calcium; endoplasmic reticulum  相似文献   

17.
Three-month-old Carrizo citrange (hybrid of Citrus sinensisL. OsbeckxPoncirus trifoliata Blanco) seedlings were grown incontrolled environment chambers in pots of fine sand. Plantswere irrigated with either non-saline or saline solutions overa 3-week period. After these treatments, plants were transferredto vessels containing a 5 m M15NO3K (96% atom excess15N) solution,and transpiration as well as concentration of15N and Cl-in roots,stem and leaves were measured after 24 h. Transpiration and15NO3-uptakerates were inhibited after exposure to NaCl and the concentrationof salt pre-treatment determined the intensity of this inhibitoryeffect. To determine the effect of transpiration on NO3-absorption,net15NO3-uptake rate was measured in salt stressed and non-stressedplants exposed to different light intensities or relative humiditiesand also in detached roots. Reduction in NO3-uptake was moreclosely related to Cl-antagonism from salt stress than to reducedtranspiration rate. Copyright 1999 Annals of Botany Company Nitrate, absorption, inhibition transport system, salt, light and humidity.  相似文献   

18.
Translocation of products of photosynthesis from gametophyteto sporophyte was examined in the moss Funaria hygrometricaHedw., as an adjunct to companion studies on the ultrastructureof the sporophyte haustorium and its capacity for absorptionof sugars in vitro. Labelled products derived from gametophyticphotosynthesis are transported to the sporophyte at an approximatelylinear rate for up to 12 h after a pulse treatment with 14CO2.Large sporophytes receive label at a greater rate than smallerones. Transport is inhibited under conditions of water stress,and by lack of light, though darkening the sporophyte alonehas no effect. Movement of label from the haustorium along theseta occurs at a velocity of 1–3 mm h–1, and issimilar to the onward movement of label derived from [3H]glucosesupplied to the haustorium in vitro.  相似文献   

19.
Sodium-independent Cl movement (i.e., Cl-anion exchange) has not previously been identified in the basolateral membranes of rat colonic epithelial cells. The present study demonstrates Cl-HCO3 exchange as the mechanism for 36Cl uptake in basolateral membrane vesicles (BLMV) prepared in the presence of a protease inhibitor cocktail from rat distal colon. Studies of 36Cl uptake performed with BLMV prepared with different types of protease inhibitors indicate that preventing the cleavage of the COOH-terminal end of AE2 protein by serine-type proteases was responsible for the demonstration of Cl-HCO3 exchange. In the absence of voltage clamping, both outward OH gradient (pHout/pHin: 7.5/5.5) and outward HCO3 gradient stimulated transient 36Cl uptake accumulation. However, voltage clamping with K-ionophore, valinomycin, almost completely (87%) inhibited the OH gradient-driven 36Cl uptake, whereas HCO3 gradient-driven 36Cl uptake was only partially inhibited (38%). Both electroneutral HCO3 and OH gradient-driven 36Cl uptake were 1) completely inhibited by DIDS, an anion exchange inhibitor, with a half-maximal inhibitory constant (Ki) of 26.9 and 30.6 µM, respectively, 2) not inhibited by 5-nitro-2-(3-phenylpropylamino)benzoic acid(NPPB), a Cl channel blocker, 3) saturated by increasing extravesicular Cl concentration with a Km for Cl of 12.6 and 14.2 mM, respectively, and 4) present in both surface and crypt cells. Intracellular pH (pHi) was also determined with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetomethylester (BCECF-AM) in an isolated superfused crypt preparation. Removal of Cl resulted in a DIDS-inhibitable increase in pHi both in HCO3-buffered and in the nominally HCO3-free buffered solutions (0.28 ± 0.02 and 0.11 ± 0.02 pH units, respectively). We conclude that a carrier-mediated electroneutral Cl-HCO3 exchange is present in basolateral membranes and that, in the absence of HCO3, Cl-HCO3 exchange can function as a Cl-OH exchange and regulate pHi across basolateral membranes of rat distal colon. crypt glands; superfusion; intracellular pH; membrane vesicles; 36Cl uptake; Cl-anion exchange  相似文献   

20.
Resistance of Photosynthesis to Hydrogen Peroxide in Algae   总被引:18,自引:0,他引:18  
The effects of H2O2 on the photosynthetic fixation of CO2 andon thiol-modulated enzymes involved in the photosynthetic reductionof carbon in algae were studied in a comparison with those inchloroplasts isolated from spinach leaves. In both systems,H2O2-scavenging enzymes were inhibited by addition of 0.1 mMNaN3 1 h prior to the addition of H2O2. A concentration (10-4M) of H2O2 caused strong inhibition of the CO2 fixation by intactspinach chloroplasts, as observed by Kaiser [(1976) Biochim.Biophys. Acta 440: 476], but not that by Euglena and Chlamydomonascells. The same results were also obtained with cells of thecyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803in the presence of 1 mM hydroxylamine. These results indicatethat algal photosynthesis is rather resistant to H2O2. The insusceptibilityto H2O2 of thiolmodulated enzymes, namely, fructose-1,6-bisphosphatase,NADP-glyceraldehyde-3-phosphate dehydrogenase, and ribulose-5-phosphatekinase, was also observed in the chloroplasts of Euglena andChlamydomonas and in cyanobacterial cells. It seems likely thatthe resistance of photosynthesis to H2O2 is due in part to theinsusceptibility of the algal thiol-modulated enzymes to H2O2. (Received April 22, 1995; Accepted June 29, 1995)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号