首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypyrimidine tract binding protein (PTB) represses some alternatively spliced exons by direct occlusion of splice sites. In repressing the splicing of the c-src N1 exon, we find that PTB acts by a different mechanism. PTB does not interfere with U1 snRNP binding to the N1 5' splice site. Instead, PTB prevents formation of the prespliceosomal early (E) complex across the intervening intron by preventing the assembly of the splicing factor U2AF on the 3' splice site of exon 4. When the unregulated 5' splice site of the upstream exon 3 is present, U2AF binding is restored and splicing between exons 3 and 4 proceeds in spite of the N1 exon bound PTB. Thus, rather than directly blocking the N1 splice sites, PTB prevents the 5' splice site-dependent assembly of U2AF into the E complex. This mechanism likely occurs in many other alternative exons.  相似文献   

2.
Trans-splicing requires that 5' and 3' splice sites be independently recognized. Here, we have used mutational analyses and a sensitive nuclease protection assay to determine the mechanism of trans-3' splice site recognition in vitro. Efficient recognition of the 3' splice site is dependent upon both the sequence of the 3' splice site itself and enhancer elements located in the 3' exon. We show that the presence of three distinct classes of enhancers results in increased binding of U2 snRNP to the branchpoint region. Several lines of evidence strongly suggest that the increased binding of U2 snRNP is mediated by U2AF. These results expand the roles of enhancers in constitutive splicing and provide direct support for the recruitment model of enhancer function.  相似文献   

3.
We have devised an in vitro splicing assay in which the mutually exclusive exons 2 and 3 of alpha-tropomyosin act as competing 3' splice sites for joining to exon 1. Splicing in normal HeLa cell nuclear extracts results in almost exclusive joining of exons 1 and 3. Splicing in decreased nuclear extract concentrations and decreased ionic strength results in increased 1-2 splicing. We have used this assay to determine the role of three constitutive pre-mRNA splicing factors on alternative 3' splice site selection. Polypyrimidine tract binding protein (PTB) was found to inhibit the splicing of introns containing a strong binding site for this factor. However, the inhibitory effect of PTB could be partially reversed if pre-mRNAs were preincubated with U2 auxiliary factor (U2AF) prior to splicing in PTB-supplemented extracts. For alpha-tropomyosin, regulation of splicing by PTB and U2AF primarily affected the joining of exons 1-3 with no dramatic increases in 1-2 splicing being detected. Preincubation of pre-mRNAs with SR proteins led to small increases in 1-2 splicing. However, if pre-mRNAs were preincubated with SR proteins followed by splicing in PTB-supplemented extracts, there was a nearly complete reversal of the normal 1-2 to 1-3 splicing ratios. Thus, multiple pairwise, and sometimes antagonizing, interactions between constitutive pre-mRNA splicing factors and the pre-mRNA can regulate 3' splice site selection.  相似文献   

4.
Multiple splicing defects in an intronic false exon   总被引:18,自引:0,他引:18       下载免费PDF全文
  相似文献   

5.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

6.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.  相似文献   

7.
Fas exon 6 can be included or skipped to generate mRNAs encoding, respectively, a membrane bound form of the receptor that promotes apoptosis or a soluble isoform that prevents programmed cell death. We report that the apoptosis-inducing protein TIA-1 promotes U1 snRNP binding to the 5' splice site of intron 6, which in turn facilitates exon definition by enhancing U2AF binding to the 3' splice site of intron 5. The polypyrimidine tract binding protein (PTB) promotes exon skipping by binding to an exonic splicing silencer and inhibiting the association of U2AF and U2 snRNP with the upstream 3' splice site, without affecting recognition of the downstream 5' splice site by U1. Remarkably, U1 snRNP-mediated recognition of the 5' splice site is required both for efficient U2AF binding and for U2AF inhibition by PTB. We propose that TIA-1 and PTB regulate Fas splicing and possibly Fas-mediated apoptosis by targeting molecular events that lead to exon definition.  相似文献   

8.
Polypyrimidine tract-binding protein (PTB) is an abundant vertebrate hnRNP protein. PTB binding sites have been found within introns both upstream and downstream of alternative exons in a number of genes that are negatively controlled by the binding of PTB. We have previously reported that PTB binds to a pyrimidine tract within an RNA processing enhancer located adjacent to an alternative 3′-terminal exon within the gene coding for calcitonin and calcitonin gene-related peptide. The enhancer consists of a pyrimidine tract and CAG directly abutting on a 5′ splice site sequence to form a pseudoexon. Here we show that the binding of PTB to the enhancer pyrimidine tract is functional in that exon inclusion increases when in vivo levels of PTB increase. This is the first example of positive regulation of exon inclusion by PTB. The binding of PTB was antagonistic to the binding of U2AF to the enhancer-located pyrimidine tract. Altering the enhancer pyrimidine tract to a consensus sequence for the binding of U2AF eliminated enhancement of exon inclusion in vivo and exon polyadenylation in vitro. An additional PTB binding site was identified close to the AAUAAA hexanucleotide sequence of the exon 4 poly(A) site. These observations suggest a dual role for PTB in facilitating recognition of exon 4: binding to the enhancer pyrimidine tract to interrupt productive recognition of the enhancer pseudoexon by splicing factors and interacting with the poly(A) site to positively affect polyadenylation.  相似文献   

9.
Alternative splicing increases the coding capacity of genes through the production of multiple protein isoforms by the conditional use of splice sites and exons. Many alternative splice sites are regulated by the presence of purine-rich splicing enhancer elements (ESEs) located in the downstream exon. Although the role of ESEs in alternative splicing of the major class U2-dependent introns is well established, no alternatively spliced minor class U12-dependent introns have so far been described. Although in vitro studies have shown that ESEs can stimulate splicing of individual U12-dependent introns, there is no direct evidence that the U12-dependent splicing system can respond to ESEs in vivo. To investigate the ability of U12-dependent introns to use alternative splice sites and to respond to ESEs in an in vivo context, we have constructed two sets of artificial minigenes with alternative splicing pathways and evaluated the effects of ESEs on their alternative splicing patterns. In minigenes with alternative U12-dependent 3' splice sites, a purine-rich ESE promotes splicing to the immediately upstream 3' splice site. As a control, a mutant ESE has no stimulatory effect. In minigene constructs with two adjacent U12-dependent introns, the predominant in vivo splicing pattern results in the skipping of the internal exon. Insertion of a purine-rich ESE into the internal exon promotes the inclusion of the internal exon. These results show that U12-dependent introns can participate in alternative splicing pathways and that U12-dependent splice sites can respond to enhancer elements in vivo.  相似文献   

10.
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.  相似文献   

11.
Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5' splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3' splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.  相似文献   

12.
A two-site model for the binding of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was tested in order to understand how exon partners are selected in complex pre-mRNAs containing alternative exons. In this model, it is proposed that two U1 snRNPs define a functional unit of splicing by base pairing to the 3' boundary of the downstream exon as well as the 5' boundary of the intron to be spliced. Three-exon substrates contained the alternatively spliced exon 4 (E4) region of the preprotachykinin gene. Combined 5' splice site mutations at neighboring exons demonstrate that weakened binding of U1 snRNP at the downstream site and improved U1 snRNP binding at the upstream site result in the failure to rescue splicing of the intron between the mutations. These results indicate the stringency of the requirement for binding a second U1 snRNP to the downstream 5' splice site for these substrates as opposed to an alternative model in which a certain threshold level of U1 snRNP can be provided at either site. Further support for the two-site model is provided by single-site mutations in the 5' splice site of the third exon, E5, that weaken base complementarity to U1 RNA. These mutations block E5 branchpoint formation and, surprisingly, generate novel branchpoints that are specified chiefly by their proximity to a cryptic 5' splice site located at the 3' terminus of the pre-mRNA. The experiments shown here demonstrate a true stimulation of 3' splice site activity by the downstream binding of U1 snRNP and suggest a possible mechanism by which combinatorial patterns of exon selection are achieved for alternatively spliced pre-mRNAs.  相似文献   

13.
In this study, we demonstrate the ability of the polypyrimidine tract binding protein PTB to function as a coordinator of splicing regulation for a trio of neuron-specific exons that are subject to developmental splicing changes in the rat cerebellum. Three neuron-specific exons that show positive regulation are derived from the GABA(A) receptor gamma2 subunit 24 nucleotide exon, clathrin light chain B exon EN, and N-methyl-D-aspartate receptor NR1 subunit exon 5 pre-mRNAs. The functional activity of splicing repressor signals located in the 3' splice site regions adjacent to the neural exons is shown using an alternative splicing switch assay, in which these short RNA sequences function in trans to switch splicing to the neural pathway in HeLa splicing reactions. Parallel UV crosslinking/competition assays demonstrate selective binding of PTB in comparison to substantially lower binding at adjacent, nonneural 3' splice sites. Substantially lower PTB binding and splicing switch activity is also observed for the 3' splice site of NMDA exon 21, which is subject to negative regulation in cerebellum tissue in the same time frame. In splicing active neural extracts, the balance of control shifts to positive regulation, and this shift correlates with a PTB status that is predominantly the neural form. In this context, the addition of recombinant PTB is sufficient to switch splicing to the nonneural pathway. The neural extracts also reveal specific binding of the CUG triplet repeat binding protein to a subset of regulatory 3' splice site regions. These interactions may interfere with PTB function or modulate splicing levels in a substrate-specific manner within neural tissue. Together these results strengthen the evidence that PTB is a splicing regulator with multiple targets and demonstrate its ability to discriminate among neural and nonneural substrates. Thus, a variety of mechanisms that counterbalance the splicing repressor function of PTB in neural tissue are capable of mediating developmental splicing control. Altered expression of PTB isoforms during cerebellar development, as documented by Western blot analysis, is proposed to be a contributing mechanism.  相似文献   

14.
The role of U2AF35 and U2AF65 in enhancer-dependent splicing.   总被引:6,自引:1,他引:5       下载免费PDF全文
Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires interactions between the SR proteins and the 35-kDa subunit of U2AF (U2AF35). However, more recent experiments have not supported the U2AF recruitment model. Here we provide additional evidence for the recruitment model. First, we confirm that base substitutions that convert weak 3' splice sites to a consensus sequence, and therefore increase U2AF binding, relieve the requirement for a splicing activator. Second, we confirm that splicing activators are required for the formation of early spliceosomal complexes on substrates containing weak 3' splice sites. Most importantly, we find that splicing activators promote the binding of both U2AF65 and U2AF35 to weak 3' splice sites under splicing conditions. Finally, we show that U2AF35 is required for maximum levels of activator-dependent splicing. We conclude that a critical function of splicing activators is to recruit U2AF to the weak 3' splice sites of enhancer-dependent introns, and that efficient enhancer-dependent splicing requires U2AF35.  相似文献   

15.
Exon repression by polypyrimidine tract binding protein   总被引:6,自引:0,他引:6       下载免费PDF全文
Polypyrimidine tract binding protein (PTB) is known to silence the splicing of many alternative exons. However, exons repressed by PTB are affected by other RNA regulatory elements and proteins. This makes it difficult to dissect the structure of the pre-mRNP complexes that silence splicing, and to understand the role of PTB in this process. We determined the minimal requirements for PTB-mediated splicing repression. We find that the minimal sequence for high affinity binding by PTB is relatively large, containing multiple polypyrimidine elements. Analytical ultracentrifugation and proteolysis mapping of RNA cross-links on the PTB protein indicate that most PTB exists as a monomer, and that a polypyrimidine element extends across multiple PTB domains. The high affinity site is bound initially by a PTB monomer and at higher concentrations by additional PTB molecules. Significantly, this site is not sufficient for splicing repression when placed in the 3' splice site of a strong test exon. Efficient repression requires a second binding site within the exon itself or downstream from it. This second site enhances formation of a multimeric PTB complex, even if it does not bind well to PTB on its own. These experiments show that PTB can be sufficient to repress splicing of an otherwise constitutive exon, without binding sites for additional regulatory proteins and without competing with U2AF binding. The minimal complex mediating splicing repression by PTB requires two binding sites bound by an oligomeric PTB complex.  相似文献   

16.
Splice site recognition and catalysis of the transesterification reactions in the spliceosome are accompanied by a dynamic series of interactions involving conserved or invariant sequences in the spliceosomal snRNAs. We have used site-specific photoactivated crosslinking in yeast spliceosomes to monitor interactions between snRNAs and exon sequences near the 5' and 3' splice sites. The last nucleotide of the 5' exon can be crosslinked to an invariant loop sequence in U5 SnRNA before and after 5' splice site cleavage. The first nucleotide of the 3' exon can also be crosslinked to the same U5 loop sequence, but this contact is only detectable after the first transesterification. These results are in close agreement with earlier data from mammalian splicing extracts, and they are consistent with a model in which U5 snRNA aligns the 5' and 3' exons for the second transesterification. After the first catalytic step of splicing, the first nucleotide of the 3' exon can also crosslink to nt U23 in U2 snRNA. This is one of a cluster of residues in U2-U6 helix I implicated by mutational analysis in the second catalytic step of splicing. The crosslinking data suggest that these residues in U2-U6 helix I are in close proximity to the scissile phosphodiester bond at the 3' splice site prior to the second transesterification. These results constitute the first biochemical evidence for a direct interaction between the 3' splice site and U2 snRNA.  相似文献   

17.
18.
S Teigelkamp  A J Newman    J D Beggs 《The EMBO journal》1995,14(11):2602-2612
Precursor RNAs containing 4-thiouridine at specific sites were used with UV-crosslinking to map the binding sites of the yeast protein splicing factor PRP8. PRP8 protein interacts with a region of at least eight exon nucleotides at the 5' splice site and a minimum of 13 exon nucleotides and part of the polypyrimidine tract in the 3' splice site region. Crosslinking of PRP8 to mutant and duplicated 3' splice sites indicated that the interaction is not sequence specific, nor does it depend on the splice site being functional. Binding of PRP8 to the 5' exon was established before step 1 and to the 3' splice site region after step 1 of splicing. These interactions place PRP8 close to the proposed catalytic core of the spliceosome during both transesterification reactions. To date, this represents the most extensive mapping of the binding site(s) of a splicing factor on the substrate RNA. We propose that the large binding sites of PRP8 stabilize the intrinsically weaker interactions of U5 snRNA with both exons at the splice sites for exon alignment by the U5 snRNP.  相似文献   

19.
The rat beta-tropomyosin gene encodes two tissue-specific isoforms that contain the internal, mutually exclusive exons 6 (nonmuscle/smooth muscle) and 7 (skeletal muscle). We previously demonstrated that the 3' splice site of exon 6 can be activated by introducing a 9-nt polyuridine tract at its 3' splice site, or by strengthening the 5' splice site to a U1 consensus binding site, or by joining exon 6 to the downstream common exon 8. Examination of sequences within exons 6 and 8 revealed the presence of two purine-rich motifs in exon 6 and three purine-rich motifs in exon 8 that could potentially represent exonic splicing enhancers (ESEs). In this report we carried out substitution mutagenesis of these elements and show that some of them play a critical role in the splice site usage of exon 6 in vitro and in vivo. Using UV crosslinking, we have identified SF2/ASF as one of the cellular factors that binds to these motifs. Furthermore, we show that substrates that have mutated ESEs are blocked prior to A-complex formation, supporting a role for SF2/ASF binding to the ESEs during the commitment step in splicing. Using pre-mRNA substrates containing exons 5 through 8, we show that the ESEs within exon 6 also play a role in cooperation between the 3' and 5' splice sites flanking this exon. The splicing of exon 6 to 8 (i.e., 5' splice site usage of exon 6) was enhanced with pre-mRNAs containing either the polyuridine tract in the 3' splice site or consensus sequence in the 5' splice site around exon 6. We show that the ESEs in exon 6 are required for this effect. However, the ESEs are not required when both the polyuridine and consensus splice site sequences around exon 6 were present in the same pre-mRNA. These results support and extend the exon-definition hypothesis and demonstrate that sequences at the 3' splice site can facilitate use of a downstream 5' splice site. In addition, the data support the hypothesis that ESEs can compensate for weak splice sites, such as those found in alternatively spliced exons, thereby providing a target for regulation.  相似文献   

20.
We report that the 3' splice site associated with the alternatively spliced exon 6 of the Fas receptor CD95 displays strict sequence requirements and that a mutation that disrupts this particular sequence arrangement leads to constitutive exon 6 skipping in a patient suffering from autoimmune lymphoproliferative syndrome (ALPS). Specifically, we find an absolute requirement for RCAG/G at the 3' splice site (where R represents purine, and / indicates the intron/exon boundary) and the balance between exon inclusion and skipping is exquisitely sensitive to single nucleotide variations in the uridine content of the upstream polypyrimidine (Py)-tract. Biochemical experiments revealed that the ALPS patient mutation reduces U2 snRNP recruitment to the 3' splice site region and that this effect cannot be explained by decreased interaction with the U2 snRNP Auxiliary Factor U2AF, whose 65- and 35-kDa subunits recognize the Py-tract and 3' splice site AG, respectively. The effect of the mutation, which generates a tandem of two consecutive AG dinucleotides at the 3' splice site, can be suppressed by increasing the distance between the AGs, mutating the natural 3' splice site AG or increasing the uridine content of the Py-tract at a position distal from the 3' splice site. The suppressive effects of these additional mutations correlate with increased recruitment of U2 snRNP but not with U2AF binding, again suggesting that the strict architecture of Fas intron 5 3' splice site region is tuned to regulate alternative exon inclusion through modulation of U2 snRNP assembly after U2AF binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号