首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Amphibious behaviour in fish has evolved separately many times since the first amphibious fishes, the rhipidistian crossopterygians, ventured onto land about 350 million years ago. This behaviour has resulted in the colonization and eventual domination by vertebrates of the terrestrial habitat. It is generally proposed that aquatic hypoxia, owing to metabolic oxygen consumption and organic decay, was the most important selective force in the evolution of air-breathing vertebrates (e.g. Randall et al., 1981). Modern amphibious fish species give an insight into the reasons for leaving and eventually abandoning the aquatic habitat. Amphibious fishes today leave the water for a variety of reasons associated with degradation of their aquatic habitat, or biotic factors within it.The possible causal factors which may elicit an emergence response are summarized in Fig. 1(a) and (b). Amphibious fish inhabiting closed systems, as typified by freshwater or intertidal pools, may leave water for any of the reasons detailed in Fig. 1(a). The relative importance of any one stimulus is likely to vary between different species. However, it is possible that in closed systems, adverse fluctuations in physico-chemical parameters will have a more important effect in eliciting amphibious behaviour than will biotic factors. In open systems, such as coastal waters or large freshwater bodies, effectively two routes of escape from adverse aquatic conditions are available to amphibious fish. They may move onto land, or alternatively they may move underwater to find better conditions. In such a system, where physico-chemical parameters remain relatively constant, abiotic factors are unlikely to have a significant influence on amphibious behaviour. The dominant stimulus in open systems is possibly the three-way interaction between predation, competition, and short-or long-term food availability (Fig. 1(b)).It is unlikely that any one of the factors discussed in this review will act alone in causing amphibious behaviour, and in this respect the available literature on fish leaving water is lacking. Much of it is fragmentary and partly anecdotal, and the limited amount of experimental work tends to concentrate on individual causal factors. There is evidently scope for detailed examination of emersion in a number of amphibious fishes, testing a matrix of environmental and biotic stimuli, in an attempt to determine in more detail the reasons for such behaviour.  相似文献   

3.
4.
Two redox-active tyrosines are present in Photosysytem II, the water-oxidizing enzyme. While the tyrosine that is kinetically competent in electron transfer, TyrZ, may also have a role in the enzyme mechanism, the second tyrosine, TyrD, has a stable radical and is not directly involved in the redox chemistry associated with enzyme function. Nevertheless, reasonable mechanistic roles for TyrD have been postulated that satisfy desires to rationalise the presence of this cofactor, or, in English, we think we know what it does. First, the TyrD radical acts an oxidant of the Mn cluster in the lowest state of the redox accumulation cycle (i.e., S(0)), providing potential benefits in maintaining the cluster in the more stable higher valence states. This redox role may also be important during Mn assembly and indeed overreduced forms of the Mn cluster appear to be oxidised by TyrD(*). Second, the proton generated by the TyrD radical is thought to remain in its vicinity having an electrostatic influence on the location and potential of the chlorophyll cation, P(+). This effect may be important for the kinetics of TyrZ oxidation and may provide a significant thermodynamic boost to the enzyme. In addition, through its electrostatic influence, TyrD(*)(H(+)) may confine the highly oxidising cation P(+) to the chlorophyll nearest to TyrZ, thereby accelerating TyrZ oxidation and restricting the potentially damaging redox chemistry to one side of the reaction centre: the disposable D1 side. This second role, evidence for which is beginning to emerge, constitutes a new role for a redox-active tyrosine in biology: as a positive charge generator in a hydrophobic environment. In this short review, we focus on work relevant to these two roles.  相似文献   

5.
There are now numerous preclinical reports of various experimental treatments promoting some functional recovery after spinal cord injury. Surprisingly, perhaps, the mechanisms that underlie recovery have rarely been definitively established. Here, we critically evaluate the evidence that regeneration of damaged pathways or compensatory collateral sprouting can promote recovery. We also discuss several more speculative mechanisms that might putatively explain or confound some of the reported outcomes of experimental interventions.  相似文献   

6.
7.
8.
Organellar genes: why do they end up in the nucleus?   总被引:16,自引:0,他引:16  
Many mitochondrial and plastid proteins are derived from their bacterial endosymbiotic ancestors, but their genes now reside on nuclear chromosomes instead of remaining within the organelle. To become an active nuclear gene and return to the organelle as a functional protein, an organellar gene must first be assimilated into the nuclear genome. The gene must then be transcribed and acquire a transit sequence for targeting the protein back to the organelle. On reaching the organelle, the protein must be properly folded and modified, and in many cases assembled in an orderly manner into a larger protein complex. Finally, the nuclear copy must be properly regulated to achieve a fitness level comparable with the organellar gene. Given the complexity in establishing a nuclear copy, why do organellar genes end up in the nucleus? Recent data suggest that these genes are worse off than their nuclear and free-living counterparts because of a reduction in the efficiency of natural selection, but do these population-genetic processes drive the movement of genes to the nucleus? We are now at a stage where we can begin to discriminate between competing hypotheses using a combination of experimental, natural population, bioinformatic and theoretical approaches.  相似文献   

9.
Regeneration: if they can do it,why can't we?   总被引:5,自引:0,他引:5  
Tanaka EM 《Cell》2003,113(5):559-562
The therapeutic potential of stem cells and nuclear cloning has led to renewed interest in classical models of regeneration. This longstanding problem is undergoing a renaissance spurred by the availability of new techniques that finally allow analysis on the cellular and molecular level.  相似文献   

10.
11.
We investigated the patterns of hibernation and arousals in seven free-ranging echidnas Tachyglossus aculeatus setosus (two male, five female) in Tasmania using implanted temperature data loggers. All echidnas showed a ‘classical’ pattern of mammalian hibernation, with bouts of deep torpor interrupted by periodic arousals to euthermia (mean duration 1.04±0.05 (n=146). Torpor bout length increased as body temperature fell during the hibernation season, and became more variable as temperature rose again. Hibernation started in late summer (February 28±5 days, n=6) and males aroused just before the winter solstice (June 15±3 days, n=3), females that subsequently produced young aroused 40 days later (July 25±3, n=4) while females that did not produce young hibernated for a further two months (arousal Sept 27±5, n=7). We suggest that hibernation in Tasmanian echidnas can be divided into two phases, the first phase, marked by declining minimum body temperatures as ambient temperature falls, appears to be obligatory for all animals, while the second phase is ‘optional’ and is utilised to varying amounts by females. We suggest that early arousal and breeding is the favoured option for females in good condition, and that the ability to completely omit breeding in some years, and hibernate through to spring is an adaptation to an uncertain climate.  相似文献   

12.
Energy coupling in type II topoisomerases: why do they hydrolyze ATP?   总被引:4,自引:0,他引:4  
Bates AD  Maxwell A 《Biochemistry》2007,46(27):7929-7941
Type II topoisomerases are essential enzymes in all cells. They help to solve the topological problems of DNA by passing one double helix through a transient break in another, in a reaction coupled to the hydrolysis of ATP. Members of one class of the enzymes, DNA gyrases, are configured to carry out an intramolecular reaction, removing positive supercoiling and introducing negative supercoiling into circular DNA using free energy derived from ATP hydrolysis. The nonsupercoiling class, including bacterial topoisomerase IV and eukaryotic topoisomerase II enzymes, can carry out both intra- and intermolecular reactions, and their primary role is the unlinking (decatenation) of daughter replicons before partition. In these enzymes, ATP hydrolysis is coupled to a reduction in DNA complexity (catenation, supercoiling, and knotting) below the level expected at equilibrium. This review discusses our current understanding of the mechanisms behind the coupling of the energy of ATP hydrolysis to topological changes catalyzed by both of these classes of enzyme.  相似文献   

13.

Background  

Cutaneous horns (cornu cutaneum) are uncommon lesions consisting of keratotic material resembling that of an animal horn. Cutaneous horn may arise from a wide range of the epidermal lesions, which may be benign, premalignant or malignant.  相似文献   

14.
Tachinids are usually considered as koinobionts as none of them kills or paralyzes the host when first entering it. These parasitoids, however, do not fit well into the koinobiont/idiobiont dichotomy because only some species show a high degree of physiological adaptation to the host, whereas the larvae of other species grow quickly following attack and kill the host rapidly, thus behaving more as idiobionts. The in vitro rearing technique provides further evidence for the poor adequacy of the koinobiont/idiobiont dichotomy for tachinids. In fact, while typical koinobionts are known to be difficult to culture on artificial media, some tachinids displaying non-synchronized development with the host have been successfully reared in vitro on insect material-free artificial media, thus behaving similarly to idiobionts. I therefore suggest not to use the koinobiont/idiobiont classification for tachinids and to class them instead only on the basis of the presence or absence of developmental synchrony with their hosts.  相似文献   

15.
Two experimental replicates were conducted to test whether strains of Beauveria brongniartii (BIPESCO2 and 2843) and Metarhizium brunneum (BIPESCO5) can endophytically colonise Vicia faba plants and improve their growth by comparing them with an endophytic strain of B. bassiana (NATURALIS®). The plants were inoculated through foliar spray and the effect of inoculation on plant height, leaf pair number, fresh root and shoot weights was measured at 7 and 14 days post inoculation (dpi). Endophytic colonisation of different plant parts with the tested fungal strains were confirmed 7 and 14?dpi through re-isolation of inoculated fungi onto selective media and subsequent Simple Sequence Repeat (SSR) marker-based genetic identification. All tested strains were able to endophytically colonise leaves, stems, and even roots of inoculated plants 7 and 14?dpi, but per cent colonisation varied significantly among strains and plant parts within each sampling date. Foliar inoculation of plants with the tested strains increased plant height, leaf pair number, fresh shoot and root weights; however the increase was not always consistent across sampling dates in both experimental replicates. This study provides the first evidence for the endophytic colonisation of plants with two strains of B. brongniartii, an important biocontrol agent of Melolontha melolontha and other scarab beetles in several European countries, and thus extends previous reports on the ability of entomopathogenic fungi to act as endophytes. It also presents possible explanations for the lack of consistency in the plant growth promotion obtained by the foliar inoculation of entomopathogenic fungi.  相似文献   

16.
17.
Generalist herbivores typically grow better on mixed- than on single-component diets. This response has been attributed to food complementarities that either enhance the utilization of nutrients or dilute the negative impacts of plant secondary compounds (PSC). For instance, when animals choose between foods that contain diverse PSC, they eat more than animals offered a food that contains just one PSC. In addition to their negative impacts on herbivore fitness, recent evidence suggests that at appropriate doses PSC may provide beneficial effects to herbivores (i.e., by reducing parasitic infections). Thus, complementarities among diverse PSC may not only influence an herbivore’s ability to consume food but also reduce the incidence of disease. We assessed the complementary effects of two PSC by offering sheep (Ovis aries) a choice of foods containing condensed tannins and saponins while challenged with a parasitic (Haemonchus contortus) infection. Animals offered a choice ate more than animals just offered tannins or saponins in single rations. However, sheep offered choices displayed greater fecal egg counts (an indirect measurement of parasitic burdens) than sheep offered single rations. Thus, saponin- and tannin-containing foods were complementary resources regarding nutrient intake but antagonistic regarding effects on parasitic loads. The nature of the relationship among PSC may depend on the dimension (i.e., nutrient intake, disease) where the interaction occurs. A unifying currency such as growth or reproductive output may help understand the trade-offs between costs (disease) and benefits (nutrient and medicine intake) for herbivores grazing multiple PSC.  相似文献   

18.
Individuals of most bat species hang head‐down by their toenails from rough surfaces, but Madagascar's endemic sucker‐footed bat (Myzopoda aurita) clings head‐up to smooth leaves using specialized pads on its wrists and ankles. We investigated the adhesive performance of 28 individuals and found that attachment performance on brass was not affected by the presence or absence of a seal around the pad–surface interface. Furthermore, on smooth acrylic, the wrist pads were more than nine‐fold weaker when lifted perpendicular to the surface than when pulled parallel to it. The unimportance of a seal and the difference in strength in those directions on a smooth surface are characteristic of wet adhesion, but not of suction. Thus, despite its name, the sucker‐footed bat appears to adhere using wet adhesion. We observed that when wrist pads were pushed anteriorly, they unpeeled easily from the surface because of deformation of the pads. This most likely permits rapid detachment during crawling, but would also cause passive detachment if bats roosted head‐down. This provides an ecomorphological explanation to the head‐up roosting behaviour of these unique bats. The results obtained in the present study thus link morphology, behaviour, and roosting ecology for an enigmatic Malagasy endemic. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 233–240.  相似文献   

19.
The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, “client” proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone–client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号