首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mono- and dinuclear base-stabilized gold(I) pyrazolate complexes, (PPh3)Au(μ-3,5-Ph2pz)) (1), (TPA)Au(3,5-Ph2pz), TPA=1,3,5-triaza-7-phophaadamantane (2), [(PPh3)2Au(μ-3,5-Ph2pz)]NO3 (3) and [(dppp)Au(μ-3,5-Ph2pz)]NO3, dppp=bis(diphenylphosphino)propane (4), have been synthesized and structurally characterized. The mononuclear gold(I) complexes 1 and 2 show intermolecular Au?Au interactions of 3.1540(6) and 3.092(6) Å, while the dinuclear gold(I) complexes 3 and 4 show an intramolecular Au?Au distances of 3.3519(7) and 3.109(2) Å, respectively, typical of an aurophilic attraction. Complexes 1-4 exhibit luminescence at 77 K when excited with ca. 333 nm UV light with an emission maximum at ca. 454 nm. The emission has been assigned to ligand-to-metal charge transfer, LMCT, based upon the vibronic structure that is observed.  相似文献   

2.
The synthesis of triethylphosphine gold(I) 4-nitrobenzenethiolate, Et3PAu(SC6H4NO2-4), is reported. Et3PAu(SC6H4NO2-4) displays a low energy visible electronic absorption band which is solvent dependent: EtOH (λmax = 385 nm), acetonitrile (λmax = 391 nm), THF (λmax = 395 nm), and DMSO (λmax = 402 nm). The corresponding low energy visible electronic absorption band of 4-nitrobenzenethiolate, 4-NO2C6H4S also shows solvent dependency: acetonitrile, (λmax = 484 nm), DMSO (λmax = 502 nm), dimethylformamide (λmax = 505 nm). The positive solvatochromic shifts for Et3PAu(SC6H4NO2-4) and 4-NO2C6H4S are consistent with an intraligand (IL) charge transfer transition, i.e. π(S) → ∗π (C6H4NO2-4) or n(S) → ∗π (C6H4NO2-4). Assignment of 4-NO2C6H4S was aided by a DFT calculation.  相似文献   

3.
It has been over 80 years since the antiarthritic properties of gold(I) complexes were first recognized. However, a detailed understanding of their mechanism of action has been slow to develop. One likely biological target of gold(I) is the cathepsin family of lysosomal cysteine proteases, enzymes involved in the inflammation and joint destruction that are hallmarks of rheumatoid arthritis (RA). We have previously shown that analogs of auranofin, a clinically available antiarthritic drug, inhibit cathepsin B. In this study, the extent to which the steric and electronic properties of the phosphine ligand can be modified to obtain enhanced potency against cathepsin B is investigated.  相似文献   

4.
Copper(I) complexes have been synthesized from the reaction of CuCl, monodentate tertiary phosphines PR3 (PR3 = P(C6H5)3; P(C6H5)2(4-C6H4COOH); P(C6H5)2(2-C6H4COOH); PTA, 1,3,5-triaza-7-phosphaadamantane; P(CH2OH)3, tris(hydroxymethyl)phosphine) and lithium bis(3,5-dimethylpyrazolyl)dithioacetate, Li[LCS2]. Mono-nuclear complexes of the type [LCS2]Cu[PR3] have been obtained and characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H, 13C and 31P) NMR spectral data; in these complexes the ligand behaves as a κ3-N,N,S scorpionate system. One exception to this stoichiometry was observed in the complex [LCS2]Cu[P(CH2OH)3]2, where two phosphine co-ligands are coordinated to the copper(I) centre. The solid-state X-ray crystal structure of [LCS2]Cu[P(C6H5)3] has been determined. The [LCS2]Cu[P(C6H5)3] complex has a pseudo tetrahedral copper site where the bis(3,5-dimethylpyrazolyl)dithioacetate ligand acts as a κ3-N,N,S donor.  相似文献   

5.
Electrospray ionization spectra of potential cyanide-containing gold-drug metabolites revealed additional, weak, unanticipated peaks at approximately twice the mass of the gold(I) and gold(III) cyanide complexes. The exact masses correspond to proton-linked bimetallic complexes, [H[Au(CN)(m)](2)](-), (m=2,4). Further investigation revealed a total of 12 examples, including trimetallic complexes, [H(2)[Au(CN)(m)](3)](-); mixed species with two complexes, [H[Au(CN)(2)][Au(CN)(4)]](-); and thiolato species, [H[(RS)Au(CN)(3)](2)](-). trans-[AuX(2)(CN)(2)Cl(2)](-) and trans-[AuX(2)(CN)(2)Br(2)](-) generated (35)Cl/(37)Cl and (79)Br/(81)Br isotopic patterns for the protonated bi- and tri-metallic analogues which were in good agreement with the presence of four or six halide ligands, respectively. Concentration-dependent studies demonstrated that the signals are independent of the solution concentrations of mono-metallic precursors, suggesting formation in the gas phase during or following droplet desolvation.  相似文献   

6.
The title compounds, for short Ag6(tsac)6 (1) and [Cu4(tsac)4(MeCN)2] · 2MeCN (2), were prepared by the reaction of thiosaccharin with Ag(I) or Cu(II) salts in different solvents. The new complexes were characterized by FT-IR, Raman, UV-Vis and NMR spectroscopy. Their crystal and molecular structures were determined by X-ray diffraction methods. The structures were solved from 1621 (1) and 7080 (2) reflections with I > 2σ(I) and refined to agreement R1-factors of 0.0261 (1) and 0.0456 (2). Ag6(tsac)6 molecule derives from the clustering of six Ag(tsac) moieties related to each other through the crystallographic 3-bar (S6) symmetry operations of the space group. This results in a highly regular molecular structure where the silver atoms are at the corners of an octahedral core slightly compressed along one of its three-fold axis [inter-metallic Ag?Ag contacts of 3.1723(4) and 3.1556(4) Å]. The six thiosaccharinate ligands bridge neighboring Ag atoms along the C3-axis through Ag-N bonds [d(Ag-N) = 2.285(2) Å] at one end and bifurcated Ag-S(thione)-Ag bonds [Ag-S distances of 2.4861(7) and 2.5014(8) Å] at the other end. In contrast, the 2 compound is arranged in the lattice as an irregular tetrameric copper complex [Cu4(tsac)4(MeCN)2] where the metals show different environments. Two copper ions are four-fold coordinated to three tsac ions through the N-atom of one tsac [Cu-N distances of 2.112(3) and 2.064(3) Å] and the thione sulfur atom of the other two [Cu-S distances in the range from 2.284(1) to 2.358(1) Å] and to a MeCN solvent molecule [Cu-N distances of 1.983(4) and 2.052(3) Å]. The other two copper ions are in three-fold environment, one trans-coordinated to two tsac ions [Cu-N distances of 1.912(3) and 1.920(3) Å] and to the thione S-atom of a third ligand [d(Cu-S) = 2.531(1) Å], the other one to the thione sulfur atom of three tsac ligands [Cu-S distances in the range from 2.229(1) to 2.334(1) Å]. The clustering renders the metals to short distances from each other, the shorter Cu?Cu distance being 2.6033(7) Å, as to presume the existence of weak inter-metallic interaction within the cluster.  相似文献   

7.
Hydrophilic, monocationic [M(L)4]PF6 complexes (M = Cu or Ag; L: thp = tris(hydroxymethyl)phosphine, L: PTA = 1,3,5-triaza-7-phosphaadamantane, L: thpp = tris(hydroxypropyl)phosphine) were synthesized by ligand exchange reaction starting from [Cu(CH3CN)4]PF6 or AgPF6 precursors at room temperature in the presence of an excess of the relevant phosphine. The related [Au(L)4]PF6 complexes (L = thp, PTA or thpp) were synthesized by metathesis reactions starting from [Au(L)4]Cl at room temperature in the presence of equimolar quantity of TlPF6. The three series of complexes [M(L)4]PF6 were tested as cytotoxic agents against a panel of several human tumour cell lines also including a defined cisplatin resistant cell line. These investigations have been carried out in comparison with the clinically used metallodrug cisplatin and preliminary structure-activity relationships are presented. The best results in terms of in vitro antitumour activity were achieved with metal-thp species and, among the coinage metal complexes, copper derivatives were found to be the most efficient drugs. Preliminary studies concerning the mechanism of action of these [M(L)4]PF6 species pointed to thioredoxin reductase as one of the putative cellular targets of gold and silver complexes and provided evidence that copper derivatives mediated their cytotoxic effect through proteasome inhibition.  相似文献   

8.
The reaction of thiosemicarbazones (TSCs) with [AuI(THT)Cl], THT = tetrahydrothiophene, has been investigated. The resulting gold(I) complexes have been characterized by a range of spectroscopic techniques: NMR spectroscopy, mass spectrometry, microanalysis and infrared spectroscopy. The in vitro antimalarial data for gold(I) TSC complexes suggests that coordination of gold(I) to TSCs enhanced their efficacy against the malaria parasite Plasmodium falciparum and their inhibition of the parasite cysteine protease falcipain-2.  相似文献   

9.
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO4)2·6H2O in methanol in 3:1 M ratio at room temperature yields light green [CuL3](ClO4)2·H2O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL3](ClO4)2·0.5CH3CN has been determined which shows Jahn-Teller distortion in the CuN6 core present in the cation [CuL3]2+. Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g|| = 2.262 (A|| = 169 × 10−4 cm−1) and g = 2.069. The Cu(II/I) potential in 1 in CH2Cl2 at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL3]+ in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL3]+ are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 Å while the ideal Cu(I)-N bond length in a symmetric Cu(I)N6 moiety is estimated as 2.25 Å. Reaction of L with Cu(CH3CN)4ClO4 in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL2]ClO4 (2). Its 1H NMR spectrum indicates that the metal in [CuL2]+ is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH2Cl2 at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From 1H NMR titration, the free energy of binding of L to [CuL2]+ to produce [CuL3]+ in CD2Cl2 at 298 K is estimated as −11.7 (±0.2) kJ mol−1.  相似文献   

10.
By the reaction of [Ag3(dppm)3I2]I with (NH4)2WS4 in MeCN/DMF (1:1), a trigonal bipyramid-shaped cluster [Ag3 I (dppm)2 WS4] (1) was isolated [dppm = bis (diphenylphosphino) methane]. By the reaction of (NH4)2WS4 with AgSCN and dppm in MeCN/DMF (1:1) in the presence of 1,10-phenathroline, an insect-shaped cluster [Ag4 (SCN)2 (dppm)4WS4]·H2O (2) was synthesized. Compounds 1 and 2 were characterized by single-crystal X-ray diffraction, luminescence, IR, UV-Vis, 1H and 31P NMR spectroscopy. In 1, and μ3-I are coordinated to three Ag atoms, which are further bridged by two dppm ligands. In 2, Ag1 and Ag4 are coordinated by two P atoms from two dppm ligands, one μ3-S from and one S atom from SCN while Ag2 and Ag3 are coordinated by one μ2-S atom and one μ3-S atom from , two P atoms from two dppm ligands.  相似文献   

11.
Gold(III) compounds have been recognized as anticancer agents due to their structural and electronic similarities with currently employed platinum(II) species. An added benefit to gold(III) agents is the ability to overcome cisplatin resistance. This work identified four gold(III) compounds, [Au(Phen)Cl2]PF6, [Au(DPQ)Cl2]PF6, [Au(DPPZ)Cl2]PF6, and [Au(DPQC)Cl2]PF6, (Phen = 1,10-phenanthroline, DPQ = dipyrido[3,2-d:2′,3′-f]quinoxaline, DPPZ = dipyrido[3,2-a:2′,3′-c] phenazine, DPQC = dipyrido[3,2-d:2′,3′-f] cyclohexyl quinoxaline) that exhibited anticancer activity in both cisplatin sensitive and cisplatin resistant ovarian cancer cells. Two of these compounds, [Au(DPQ)Cl2]PF6 (AQ) and [Au(DPPZ)Cl2]PF6 (AZ), displayed exceptional anticancer activity and were the focus of more intensive mechanistic study. At the molecular level, AQ and AZ formed DNA adducts, generated free radicals, and upregulated pro-apoptotic signaling molecules (p53, caspases, PARP, death effectors). Taken together, these two novel gold(III) polypyridyl complexes exhibit potent antitumor activity in cisplatin resistant cancer cells. These activities may be mediated, in part, by the activation of apoptotic signaling.  相似文献   

12.
Two gold(I) mononuclear complexes have been prepared by reacting gold(I) tetrahydrothiophene with N,N′-di(2,6-methyl)phenylformamidine. The neutral complex [N,N′-di(2,6-methyl)phenylformamidine)-gold(I) chloride (C17H20AuClN2) (1), crystallizes in the triclinic group while the cationic [N,N′-di(2,6-methyl)phenylformamidine](tetrahydrothiophene)-gold(I) (C21H28AuN2S) (2) crystallizes with a nitrate anion in the monoclinic group P2(1)/n. Both compounds are good starting materials for synthetic gold chemistry.  相似文献   

13.
Four mixed ligand gold(I) complexes with the thioamides 2-mercapto-thiazolidine (mtzdH), 2-mercapto-benzothiazole (mbztH) and 5-chloro-2-mercapto-benzothiazole (ClmbztH) and triphenylphosphine (tpp) of formulae [Au(tpp)Cl] (1) [Au(tpp)(mtzd)] (2), [Au(tpp)(mbzt)] (3) and [Au(tpp)(Clmbzt)] (4), already known, were used to study their mechanism of inhibition activity towards the catalytic oxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX), kinetically and theoretically. The results are compared to those of cisplatin. In addition, the anticancer cell screening results against leimyosarcoma (LMS) cells have shown that 2-4 complexes were more active than cisplatin. The uptake of complexes in LMS cells were also studied with electrospray ionisation mass spectrometry spectroscopy.  相似文献   

14.
Schiff base condensation of m-phenylenediamine with two equivalents of o-(diphenylphophino)benzaldehyde products the potentially tetradentate molecule 1,3-(Ph2P(o-C6H4)CHN)2C6H4 (1) in high yield. The reaction of 1 and [Cu(NCMe)4]BF4 affords the dinuclear complex [(1,3-(Ph2P(o-C6H4)CHN)2C6H4)2Cu2](BF4)2 (2) through coordination of the imino-phosphine groups. The structure of 2 has been determined by an X-ray diffraction study.  相似文献   

15.
In this study we characterised the in vitro antitumour and hepatotoxicity profiles of a series of Au(I) and Ag(I) bidentate phenyl and pyridyl complexes in a panel of cisplatin-resistant human ovarian cancer cell-lines, and in isolated rat hepatocytes. The gold and silver compounds overcame cisplatin-resistance in the CH1-cisR, 41M-cisR and SKOV-3 cell-lines, and showed cytotoxic potencies strongly correlated with their lipophilicity. Complexes with phenyl or 2-pyridyl ligands had high antitumour and hepatotoxic potency and low selectivity between different cell-lines. Their cytotoxicity profiles were similar to classic mitochondrial poisons and an example of this type of compound was shown to accumulate preferentially in the mitochondria of cancer cells in a manner that depended upon the mitochondrial membrane potential. In contrast, complexes with 3- or 4-pyridyl ligands had low antitumour and hepatotoxic potency and cytotoxicity profiles similar to 2-deoxy-D-glucose. In addition, they showed high selectivity between different cell-lines that was not attributable to variation in uptake in different cell-types. The in vitro hepatotoxic potency of the series of gold and silver compounds varied by over 61-fold and was closely related to their lipophilicity and hepatocyte uptake. In conclusion, Au(I) and Ag(I) bidendate pyridyl phosphine complexes demonstrate activity against cisplatin-resistant human cancer cells and in vitro cytotoxicity that strongly depends upon their lipophilicity.  相似文献   

16.
Copper and other transition metal ions and their complexes are catalysts for the decomposition of nitrosothiols. In this way they catalyze the biological functions of nitrosothiols. The kinetics and mechanism of the reaction of two nitrosothiols, S-nitrosothiolactic acid and S-nitrosoglutathione (GSNO), with copper(I) are reported. The kinetics of the reaction of Cu(MeCN) n + (n=0–3) with the nitrosothiols were studied. The results indicate that Cu+ aq is the active species in the GSNO system, with k(Cu+ aq+GSNO)=(9.4 ±2.0)×107 dm3 mol−1 s−1 . The results also indicate that the Cu(MeCN) n + (n=0–3) complexes react with S-nitrosothiolactic acid. Transient species are formed in these processes. The results suggest that these species contain copper(I) and thiol. The results shed light on the catalytic role of copper complexes in the decomposition of S-nitrosothiols. Received 10 April 1999 / Accepted 17 December 1999  相似文献   

17.
A series of new gold(I) and gold(III) complexes based on the saccharinate (sac) ligand, namely M[Au(sac)2] (with M being Na+, K+ or NH4+), [(PTA)Au(sac)], K[Au(sac)3Cl] and Na[Au(sac)4], were synthesized and characterized, and some aspects of their biological profile investigated. Spectrophotometric analysis revealed that these gold compounds, upon dissolution in aqueous media, at physiological pH, manifest a rather favourable balance between stability and reactivity. Their reactions with the model proteins cytochrome c and lysozyme were monitored by mass spectrometry to predict their likely interactions with protein targets. In the case of disaccharinato gold(I) complexes, cytochrome c adducts bearing four coordinated gold(I) ions were preferentially formed in high yield. In contrast, [(PTA)Au(sac)] (PTA = 1,3,5-triaza-7-phosphaadamantane) turned out to be poorly effective, only producing a mono-metalated adduct in very low amount. In turn, the gold(III) saccharinate derivatives were less reactive than their gold(I) analogues: K[Au(sac)3Cl] and Na[Au(sac)4] caused moderate protein metalation, again with evidence of formation of tetragold adducts. Finally, the above mentioned gold compounds were challenged against the reference human tumor cell line A2780S and its cisplatin resistant subline A2780R and their respective cytotoxic profiles determined. [(PTA)Au(sac)] turned out to be highly cytotoxic whereas moderate cytotoxicities were observed for the gold(III) complexes and only modest activities for disaccharinato gold(I) complexes. The implications of these results are thoroughly discussed in the light of current knowledge on gold based drugs.  相似文献   

18.
The ligands bis-(imidazolium) hexafluorophosphate (Himy = -C3N2H3-, imidazolium; R = 1-naphthylmethylene, 1a; 9-anthracenylmethylene, 1b) with an oxoether chain were easily prepared by the reaction of substituted imidazole with the diglycol diiodide, followed by exchange of anions with . 1a and 1b reacted with Ag2O in DMSO or CH3CN to yield [2 + 2] dinuclear Ag(I) NHCs macrocyclic complexes 2a and 2b, which showed much different conformation in solid corresponding to the R- substituent. Carbene transmetalation reactions of 2a-b with Au(SMe2)Cl give dinuclear Au(I) analogs 3a and 3b. The new NHCs complexes were characterized by elemental analyses, 1H NMR, 13C NMR and the structures of 2a-b and 3a were confirmed by X-ray diffraction determination.  相似文献   

19.
31P{1H} NMR spectra of metal-organic [(nBu3P)mMO2CMe] (M = Cu, Ag; m = 1, 1.5, 2, 2.5, 3, 3.5, 4) have been studied in the temperature range of 308-178 K. Exchange parameters were determined for the appropriate silver(I) complexes. Possible ligand exchange mechanisms based on dissociative and associative processes are discussed.  相似文献   

20.
The crystal structure of the title compound (C3H12N2)2Cu2Br6, is monoclinic, space group P21/n, with lattice constants a=8.222(2), b=11.214(2), c=10.646(2) Å, β=91.97(1)° and V=981.0(3) Å3. The structure contains anionic Cu2Br62− dimers and N-methylethylenediammonium (henceforth MEDA2+) cations. The centrosymmetric dimer units are composed of two edge-shared CuBr4 tetrahedra, with bridging Cu-Br distances 0.08 Å longer than the terminal distances. A pair of MEDA2+ cations hydrogen bond to each dimer via two of the -NH3+ hydrogen atoms and one of the -NH2+- hydrogen atoms. Additional hydrogen bonding between the cations and anions tie the structure together in a complex supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号