首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two new ruthenium complexes [Ru(bpy)2(mitatp)](ClO4)21 and [Ru(bpy)2(nitatp)](ClO4)22 (bpy = 2,2′-bipyridine, mitatp = 5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene, nitatp = 5-nitro-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) have been synthesized and characterized by elemental analysis, 1H NMR, mass spectrometry and cyclic voltammetry. Spectroscopic and viscosity measurements proved that the two Ru(II) complexes intercalate DNA with larger binding constants than that of [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and possess the excited lifetime of microsecond scale upon binding to DNA. Both complexes can efficiently photocleave pBR322 DNA in vitro under irradiation. Singlet oxygen (1O2) was proved to contribute to the DNA photocleavage process, the 1O2 quantum yields was determined to be 0.43 and 0.36 for 1 and 2, respectively. Moreover, a photoinduced electron transfer mechanism was also found to be involved in the DNA cleavage process.  相似文献   

2.
The synthesis and crystal structures of two new phosphine ruthenium polypyridine complexes [Ru(tpy)(bpy)(PR3)]2+ with R = Ph (1), Cy (2) are reported. Their geometrical parameters are intimately related to the electronic and steric properties of the phosphine ligand. Electrochemical and UV-Vis analyses showed the influence of the substituents of the coordinated phosphorus atom on the RuIII/RuII potential and on the frontier orbitals energy gap. The results are discussed in terms of steric effects and net donor power of the phosphine ligands.  相似文献   

3.
Gradient-corrected density functional theory applied to 1,2-diphosphino-1,2-dicarba-closo-dodecaborane, 1,2-(PH2)2-1,2-C2B10H10, and its respective PdCl2 complex presents a clear picture of the effect of complexation on the P-Cc-Cc-P fragments (Cc = cage carbon C1 or C2) in the structures. The complexation results in clear closing in the P-Cc-Cc angles and shortening of Cc-Cc bond, but only minor changes take place in the P-Cc-Cc-P torsion angle. Furthermore, complexation brings along shortening of the P-Cc bonds with concomitant increase of covalency, as revealed by atoms-in-molecules calculations. Although there is also change in the Cc-Cc distance in the cage, no significant change is involved in the bonding. These findings are compared with the results obtained by single-crystal X-ray study for [PdCl2(1,2-(PiPr2)2-1,2-C2B10H10)] and additional calculations carried out for [PdCl2(1,2-(PH2)2-C2H4)].  相似文献   

4.
Hexa-coordinated chelate complex cis-[Ru(CO)2I2(P∩S)] (1a) {P∩S = η2-(P,S)-coordinated} and penta-coordinated non-chelate complexes cis-[Ru(CO)2I2(P∼S)] (1b-d) {P∼S = η1-(P)-coordinated} are produced by the reaction of polymeric [Ru(CO)2I2]n with equimolar quantity of the ligands Ph2P(CH2)nP(S)Ph2 {n = 1(a), 2(b), 3(c), 4(d)} in dichloromethane at room temperature. The bidentate nature of the ligand a in the complex 1a leads to the formation of five-membered chelate ring which confers extra stability to the complex. On the other hand, 1:2 (Ru:L) molar ratio reaction affords the hexa-coordinated non-chelate complexes cis,cis,trans-[Ru(CO)2I2(P∼S)2] (2a-d) irrespective of the ligands. All the complexes show two equally intense terminal ν(CO) bands in the range 2028-2103 cm−1. The ν(PS) band of complex 1a occurs 23 cm−1 lower region compared to the corresponding free ligand suggesting chelation via metal-sulfur bond formation. X-ray crystallography reveals that the Ru(II) atom occupies the center of a slightly distorted octahedral geometry. The complexes have also been characterized by elemental analysis, 1H, 13C and 31P NMR spectroscopy.  相似文献   

5.
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L1 (5,7-dimethyl-3-(2′,3′,5′-tri-O-benzoyl-β-d-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L2 (5,7-dimethyl-3-β-d-ribofuranosyl-s-triazolo[4,3-a]pyrimidine) and L3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L1)](NO3)2, [Pd(bpy)(L1)](NO3)2, cis-Pd(L3)2Cl2, [Pd2(L3)2Cl4] · H2O, cis-Pd(L2)2Cl2 and [Pt3(L1)2Cl6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd2(L3)2Cl4] · H2O complex was established by X-ray crystallography. The two L3 ligands are found in a head to tail orientation, with a Pd?Pd distance of 3.1254(17) Å. L1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond.  相似文献   

6.
The copper(II) complex of the acyclic EBTA ligand (H4EBTA = 1,2-bis(2-aminoethoxy)benzene-N,N,N′,N′-tetraacetic acid) has been prepared and characterized by X-ray analysis. The two copper ions of the dinuclear unit present the same distorted octahedral coordination polyhedra. The EBTA ligand is shared between two copper coordination centres, with the formation of centrosymmetric dimers, which are linked in a supramolecular tridimensional structure via additional interactions through the coordinated waters molecules with adjacent carboxylic oxygen atoms. The stability and protonation constants of EBTA with Cu(II) and Zn(II) ions indicate a higher stability of these complexes with respect to the corresponding complexes with the more flexible EGTA ligand (H4EGTA = ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid). On the other hand, the lower stability of [Gd(EBTA)] than [Gd(EGTA)] results in a decreased overall selectivity (lower Ksel) of EBTA towards Gd(III) and suggests that this complex may undergoes transmetallation reactions under physiological conditions.  相似文献   

7.
The reaction of ruthenium carbonyl polymer ([Ru(CO)2Cl2]n) with azopyridyl compounds (2,2′-azobispyridine; apy or 2-phenylazopyridine; pap) generated new complexes, [Ru(azo)(CO)2Cl2] (azo = apy, pap). [Ru(apy)(CO)2Cl2] underwent photodecarbonylation to give a chloro-bridged dimer complex, whereas the corresponding pap complex ([Ru(pap)(CO)2Cl2]) was not converted to a dimer. The reactions of the chloro-bridged dimer containing the bpy ligand (bpy = 2,2′-bipyridine) with either apy or pap resulted in the formation of mixed polypyridyl complexes, [Ru(azo)(bpy)(CO)Cl]+. The novel complexes containing azo ligands were characterized by various spectroscopic measurements including the determination of X-ray crystallographic structures. Both [Ru(azo)(CO)2Cl2] complexes have two CO groups in a cis position to each other and two chlorides in a trans position. The azo groups are situated cis to the CO ligand in [Ru(azo)(bpy)(CO)Cl]+. All complexes have azo N-N bond lengths of 1.26-1.29 Å. The complexes exhibited azo-based two-electron reduction processes in electrochemical measurements. The effects of introducing azopyridyl ligands to the ruthenium carbonyl complexes were examined by ligand-based redox potentials, stretching frequencies and force constants of CO groups and bond parameters around Ru-CO moieties.  相似文献   

8.
A novel ligand 2′-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo[4′,5′-f][1,10]-phenanthroline (NMIP) and its complex [Ru(phen)2(NMIP)]2+ have been synthesized and characterized by mass spectroscopy, 1H NMR and cyclic voltammetry. Binding of the complex with calf thymus DNA (CT DNA) has been investigated by spectroscopic methods, viscosity and electrophoresis measurements. The experimental results indicate that [Ru(phen)2(NMIP)]2+ binds to DNA via partial intercalative mode and the individual enantiomers of it bind to DNA in different rates. [Ru(phen)2(NMIP)]2+ has also been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled Form I to the open circular Form II upon irradiation.  相似文献   

9.
Three new ruthenium(II) complexes which contain two 1,10-phenanthroline units and a third bis-thioether chelate have been prepared and characterized. For two complexes, the X-ray structure shows a perfect fit between the two phen ligands and the bis-thioethers, with almost perfect C2 symmetry for the Ru(phen)2 unit and the S-containing ligand. This geometrical complementarity is also reflected by π-π stacking between the phen nuclei and the S-borne phenyl rings. In relatively harsher preparation conditions a ruthenium complex composed of one phenanthroline and two bis-thioethers is formed as a result of a scrambling reaction. When a bis-thioether chelate incorporated in a macrocycle also including a 6,6′-disubstituted-2,2′-bipyridine unit is used, 1H NMR study shows that an exo S-bonded ruthenium(II) complex is obtained. In presence of chloride anions a photosubstitution reaction of the bis-thioether chelate takes place selectively and efficiently.  相似文献   

10.
Ten novel adducts of the form AgClO4:PR3:L (1:1:1) (R = Ph, cy, o-tolyl; L = 2,2′-bipyridyl (‘bpy’), 2,2′-biquinoline (‘bq’), bis(2-pyridyl)amine (‘dpa’), bis(2-picolyl)amine (‘dpca’)) have been synthesized and characterized by analytical, spectroscopic (IR, far-IR, 1H and 31P NMR) and single crystal X-ray diffraction studies. The solid state molecular structures show that the complexes predominantly take the form [(R3P)AgL]+X, with a trigonal PAgN2 coordination environment, where the approach of the anion or the solvent may perturb the planarity of the silver environment. The ClO4 anion shows uni- or semi-bidentate coordination, except in the complexes AgClO4:PR3:dpca (1:1:1) (R = Ph and o-tolyl), where the anion remains uncoordinated and the dpca donor is a three-coordinate pincer-like ligand.  相似文献   

11.
The diagrams of MLCT and d-d excited states of the complexes [Ru(NH3)5(py-X)]2+ are calculated using semiempirical CINDO/S method. Comparison of the relative energies of MLCT and d-d excited states leads to the understanding of the background of the rules, found earlier by Ford et al., that govern photochemical activity of the Ru(II) complexes under consideration.  相似文献   

12.
Two isomeric dibenzo-O2S2 macrocycles L1 and L2 have been synthesised and their coordination chemistry towards palladium(II) has been investigated. Two-step approaches via reactions of 1:1-type complexes, [cis-Cl2LPd] (1a: L = L1, 1b: L = L2), with different O2S2 macrocycle systems (L1 and L2) have led to the isolation of the following bis(O2S2 macrocycle) palladium(II) complexes in the solid state: [Pd(L1)2](ClO4)2 (2a) and a mixture of [Pd(L1)2](ClO4)2 (2a) + [Pd(L2)2](ClO4)2 (2b).  相似文献   

13.
The molecular structure of copper(II) chloride complex with acrylamide (AAmCH2CHCONH2), [Cu(AAm)4Cl2], was determined using X-ray diffraction analysis. The complex crystallizes in the cubic space group I-43d with a = 17. 8310(2) Å, β = 90°, and V = 5669.27(11) Å3 for Z = 12. The acrylamide molecules bind to the metal center via the carbonyl oxygen atom (Cu-O 1.996 Å). The coordination geometry of the metal center in the complex involves a tetragonally distorted octahedral structure with four O-donor atoms of acrylamide bonded in the equatorial positions and two chlorides in the apical positions. Comparison of crystal structure data of acrylamide and metal acrylamide complexes of those formed with divalent transition metal chlorides has been summarized.  相似文献   

14.
Treatment of the Rh(III) complex [Tp∗Rh(SPh)2(MeCN)] (1) with a series of late transition metal complexes resulted in the formations of thiolate-bridged di- and trinuclear complexes, which include the Rh(III)-Rh(I) complexes, [Tp∗RhCl(μ-SPh)2Rh(cod)] (2) and [Tp∗RhCl(μ-SPh)2Rh(PPh3)2], the Rh(III)-Pd(II) complexes, [Tp∗RhCl(μ-SPh)2Pd(η3-C3H5)] (4), [{Tp∗Rh(MeCN)}(μ-SPh)2PdCl2] (5), and [{Tp∗RhCl(μ-SPh)2}2Pd] (6), and the Rh(III)-Pt(II) complex [{Tp∗RhCl(μ-SPh)2}2Pt] (7). Early-late transition metal complexes containing the Rh(III)-Re(I) and Rh(III)-Mo(0) metal centers, [Tp∗RhCl(μ-SPh)2Re(CO)4] and [{Tp∗Rh(CO)}(μ-SPh)2Mo(CO)4] were also prepared from 1. The X-ray analysis has been carried out to confirm the structures for 2, 4, 5, 6, and 7.  相似文献   

15.
The reaction of [FeII(H2O)6](BF4)2 with tris(2-pyridylmethyl)amine (TPyA) and triethylamine in methanol under aerobic conditions forms [(TPyA)FFeIIIOFeIIIF(TPyA)](BF4)2 · 0.5MeOH (1), in which each Fe(III) ion is coordinated to a TPyA and an F ion as well as an oxo ion (O2−) linking two Fe(III) ions. 1 has offset face-to-face π-π interactions between the dimers, and possesses a supramolecular network structure. The magnetic susceptibility of 1 can be fit with g = 2.0, J/kB = − 153 K (106 cm−1), and θ = − 0.3 K [H = − 2JSa · Sb]. These indicate that very strong antiferromagnetic interactions occur via the oxo bridge within the Fe(III) dimer and weak antiferromagnetic interactions between the dimers.  相似文献   

16.
Twenty-one adducts of the form AgX:ER3:L (1:1:1) (X = CF3COO (‘tfa’), CH3COO (‘ac’), E = P, As; R = Ph, cy, o-tolyl; L = 2,2′-bipyridyl (‘bpy’)-based ligand) have been synthesized and characterized by analytical, spectroscopic (IR, far-IR, 1H, 19F and 31P NMR) and single crystal X-ray diffraction studies. The resulting complexes are predominantly of the form [(R3E)AgL]+X, with a trigonal EAgN2 coordination environment, the planarity of which may be perturbed by the approach of anion or solvent. The carboxylate anions have been found to be uni-, or semi-bidentate, or also completely ionic, as in the complexes [Ag(PPh3)(bpy)(H2O)](tfa) and [Ag(PPh3)(dpk · H2O)](tfa) (‘dpk · H2O’ = bis(2-pyridyl)ketone (hydrated)). The complexes Agac:PPh3:dpa (1:1:1) and Agac:P(o-tol)3:dpa:MeCN (1:1:1:1) are dinuclear, with bridging unidentate acetate and terminal unidentate dpa (‘dpa’ = bis(2-pyridyl)amine).  相似文献   

17.
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy)2](ClO4)2, where L1 = N,N’-bis(4-nitrocinnamald-ehyde)ethylenediamine and L2 = N,N’-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, Kb and the linear Stern–Volmer quenching constant, KSV. The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy)2](ClO4)2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.  相似文献   

18.
Treatment of ‘RuCl3 · 3H2O’ with Ph2AsCH2AsPh2 (dpam) in hot EtOH gives either trans-[RuCl2(dpam-As,As′)(dpam-As)2] (1), or cis-[RuCl2(dpam-As,As′)2] (2), depending on the mole ratio. On exposure to light, solutions of 2 isomerise to trans-[RuCl2(dpam-As,As′)2] (3). Treatment of [RuCl2(PPh3)3] with two equivalents of dpam in CH2Cl2 gave a mixture of two products, from which trans-[RuCl2(PPh3) (dpam-As,As′)(dpam-As)] (4) was isolated by recrystallisation. The crystal structures of 1-4 are reported. Complexes 1-3 in CH2Cl2 undergo electrochemical oxidation to Ru(III), and the Ru(III) form of 2 undergoes isomerisation on the voltammetric timescale to the Ru(III) form of 3.  相似文献   

19.
Lewis acid catalysts [Eu(NTf2)3] and [Yb(NTf2)3] can be easily crystallized from a p-xylene solution in the presence of carboxylic acids and a small amount of water to give a trihydrate and a pentahydrate, respectively. In the crystallization of [Eu(NTf2)3(H2O)3], linear molecules such as n-alkanes and n-alkanoic acids act as templates to form crystals belonging to the trigonal space group with a hexagonal cylindrical structure, which is constructed by 3D hydrogen bonding network. On the other hand, [Eu(NTf2)3(H2O)3] crystallized in the cubic space group P213 in the presence of a bulkier carboxylic acid, cyclohexanecarboxylic acid. In both [Eu(NTf2)3(H2O)3] crystals, ligands act as bidentate ligands coordinating to the Eu atom through two oxygen atoms. [Yb(NTf2)3] crystallized as a pentahydrate in the monoclinic space group P21/n, in which ligands coordinated to the Yb atom with only one oxygen atom.  相似文献   

20.
Cyclometalation of benzo[h]quinoline (bzqH) by [RuCl(μ-Cl)(η6-C6H6)]2 in acetonitrile occurs in a similar way to that of 2-phenylpyridine (phpyH) to afford [Ru(bzq)(MeCN)4]PF6 (3) in 52% yield. The properties of 3 containing ‘non-flexible’ benzo[h]quinoline were compared with the corresponding [Ru(phpy)(MeCN)4]PF6 (1) complex with ‘flexible’ 2-phenylpyridine. The [Ru(phpy)(MeCN)4]PF6 complex is known to react in MeCN solvent with ‘non-flexible’ diimine 1,10-phenanthroline to form [Ru(phpy)(phen)(MeCN)2]PF6, being unreactive toward ‘flexible’ 2,2′-bipyridine under the same conditions. In contrast, complex 3 reacts both with phen and bpy in MeCN to form [Ru(bzq)(LL)(MeCN)2]PF6 {LL = bpy (4) and phen (5)}. Similar reaction of 3 in methanol results in the substitution of all four MeCN ligands to form [Ru(bzq)(LL)2]PF6 {LL = bpy (6) and phen (7)}. Photosolvolysis of 4 and 5 in MeOH occurs similarly to afford [Ru(bzq)(LL)(MeCN)(MeOH)]PF6 as a major product. This contrasts with the behavior of [Ru(phpy)(LL)(MeCN)2]PF6, which lose one and two MeCN ligands for LL = bpy and phen, respectively. The results reported demonstrate a profound sensitivity of properties of octahedral compounds to the flexibility of cyclometalated ligand. Analogous to the 2-phenylpyridine counterparts, compounds 4-7 are involved in the electron exchange with reduced active site of glucose oxidase from Aspergillus niger. Structure of complexes 4 and 6 was confirmed by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号