共查询到20条相似文献,搜索用时 0 毫秒
1.
Three new Mg(II) bis(pendant arm) macrocyclic Schiff-base complexes, [MgLn]2+(n=5, 6, 7), have been prepared via cyclocondensation of 2,6-diacetylpyridine with branched hexaamines and characterised spectroscopically. In addition, for [MgL5](ClO4)2 the crystal structure is reported. This is the first X-ray structural determination of an Mg(II) complex coordinated by seven nitrogen atoms. The ligands, L, are 15-, 16- and 17-membered pentaaza macrocycles having two 2-aminoethyl pendant arms [L5; 2,13-dimethyl-6,9-bis(aminoethyl)-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18), 2, 12, 14, 16-pentaene, L6; 2,14-dimethyl-6,10-bis(aminoethyl)-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19), 2, 13, 15, 17-pentaene and L7; 2,15-dimethyl-6,11-bis(aminoethyl)-3,6,11,14,20-pentaazabicyclo[14.3.1]eicosa-1(20),2,14,16,18-pentaene]. The crystal structure of [MgL5](ClO4)2, was determined by X-ray diffraction and showed that the complex cation that had formed consisted of a pentagonal bipyramidally coordinated Mg(II) ion. All complexes were characterised by IR, 1H NMR,13C NMR, COSY(H,H) and HETCOR(H,C) spectroscopy, and the data indicate that the structure is approximately pentagonal bipyramidal in each case. This structural assignment is also supported by ab initio HF-MO calculations made using the standard 3-21G* basis set. 相似文献
2.
Hassan Keypour Hamid Goudarziafshar Robin G. Pritchard 《Inorganica chimica acta》2008,361(5):1415-1420
A series of Mn(II) macrocyclic Schiff-base complexes [MnLn]2+ have been prepared via the Mn(II) templated [1+1] cyclocondensation of 2,9-dicarboxaldehyde-1,10-phenanthroline with appropriate linear and branched amines. In this way ligands the pentaaza macrocycle L1 which is 15-membered and L2 which is 16-membered possessing no pendant arm, L6 is 15-membered with one 2-aminoethyl pendant arm and L8 which is 18-membered hexaaza macrocycle with two 2-aminoethyl pendant arms are formed. All the complexes have been characterized using spectroscopic methods. The crystal structures of [MnL8](ClO4)2 · EtOH were determined and indicate that in the solid state the complex adopts a slightly distorted hexagonal bipyramid geometry with the Mn(II) ion located within a hexaaza macrocycle with the two pendant amines coordinating in the axial positions. 相似文献
3.
Hassan Keypour Hamid Goudarziafshar Robin G. Pritchard 《Inorganica chimica acta》2007,360(7):2298-2306
Complexes of three Cd(II)-containing macrocyclic Schiff base complexes containing a phenanthroline ligand (L) of the type [CdLn(Cl)]+ (n=2,3,4), have been prepared via [1+1] cyclocondensation of 2,9-dicarboxaldehyde-1,10-phenanthroline and a number of linear triamines via a metal-templated reaction and coordination features have been examined. The ligands, L, are 16-, 17-, and 18-membered pentaaza macrocycles and all the complexes incorporate a 1,10-phenanthroline unit as an integral part of their cyclic structure. The complexes have been characterized by a variety of methods including IR, 1H, 13C, DEPT, COSY(H,H) and HMQC(H,C) NMR studies and MALDI mass spectrometry. The polymeric structure of was determined by X-ray crystallography, which showed that the complex cation consisted of a pentagonal bipyramidally coordinated Cd(II) ion. The seven-coordinated Cd(II) ion is ligated by the five nitrogen atoms of the macrocycle in the equatorial plane and has two bridging chloride ligands in the axial positions resulting in a ribbon of such complex ions. Supporting ab initio HF-MO calculations have been undertaken using the standard 3-21G∗ and 6-31G∗ basis sets. 相似文献
4.
New 2-aminoethyl pendant-armed Schiff base macrocyclic complexes, [ML7]2+ (M = Mn(II), Mg(II), Zn(II) and Cd(II)), have been prepared via M(II) templated [1 + 1] cyclocondensation of 2,6-diacetylpyridine with a new branched hexamine, N,N,N′,N′-tetrakis(2-aminoethyl)-2,2-dimethylpropane-1,3-diamine. The ligand is a 16-membered pentaaza macrocycle having two 2-aminoethyl pendant arms [L7 is 2,14-dimethyl-6,10-bis(2-aminoethyl)-3,6,10,13,19-pentaazabicyclo[13.3.1]8,8-dimethylnonadeca-1(19),2,13,15,17-pentaene]. The crystal structures of [MnL7]2+ and [MgL7]2+ were determined from X-ray diffraction data. The geometry of the coordination sphere of complexes is a slightly distorted pentagonal bipyramid with the metal ion located within a pentaaza macrocycle and two pendant amines coordinating on opposite sides. All complexes were characterized by IR, microanalysis and except of [MnL7]2+ by 1H NMR, 13C NMR, DEPT135, COSY(H, H) and HMQC spectroscopy. The data indicate that the structure is pentagonal bipyramidal in each case. The structure of all complexes has also been theoretically studied by ab initio Hartree-Fock and density functional theory methods. 相似文献
5.
Ali Akbar Khandar Seyed Abolfazl Hosseini-Yazdi Seyed Amir Zarei 《Inorganica chimica acta》2005,358(11):3211-3217
Copper(II) and nickel(II) complexes of potentially N2O4 Schiff base ligands 2-({[2-(2-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}ethoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L1) and 2-({[2-(4-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}butoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L2) prepared of 5-phenylazo salicylaldehyde (1) and two various diamines 2-[2-(2-aminophenoxy)ethoxy]aniline (2) and 2-[4-(2-aminophenoxy)butoxy]aniline (3) were synthesized and characterized by a variety of physico-chemical techniques. The single-crystal X-ray diffractions are reported for CuL1 and NiL2. The CuL1 complex contains copper(II) in a near square-planar environment of N2O2 donors. The NiL2 complex contains nickel(II) in a distorted octahedral geometry coordination of N2O4 donors. In all complexes, H2L1 behaves as a tetradentate and H2L2 acts as a hexadentate ligand. Cyclic voltammetry of copper(II) complexes indicate a quasi-reversible redox wave in the negative potential range. 相似文献
6.
Soma Sen Samiran Mitra David L. Hughes Georgina Rosair Cdric Desplanches 《Inorganica chimica acta》2007,360(15):4085-4092
Two new dicyanamide bridged 1D polynuclear copper(II) complexes [Cu(L1){μ1,5-N(CN)2}]n (1) [L1H = C6H5C(O)NHNC(CH3)C5H4N] and [Cu(L2){μ1,5-N(CN)2}]n (2) [L2H=C6H5C(O)CHC(CH3)NCH2CH2N(CH3)2] have been synthesised and structures of both the complexes and their crystal packing arrangements have been established by X-ray crystallography. For complex 1, a tridentate hydrazone ligand (L1H) obtained by the condensation of benzhydrazide and 2-acetylpyridine is used, whereas a tridentate Schiff base (L2H) derived from benzoylacetone and 2-dimethylaminoethylamine is employed for the preparation of complex 2. Variable temperature magnetic susceptibility measurement studies indicate there are weak antiferromagnetic interactions with J values −0.10 and −1.41 cm−1 for 1 and 2, respectively. 相似文献
7.
Manganese(II) complexes, Mn2L13(ClO4)4, MnL1(H2O)2(ClO4)2, MnL2(H2O)2(ClO4)2, and {(μ-Cl)MnL2(PF6)}2 based on N,N′-bis(2-pyridinylmethylene) ethanediamine (L1) and N,N′-bis(2-pyridinylmethylene) propanediamine (L2) ligands have been prepared and characterized. The single crystal X-ray diffraction analysis of Mn2L23(ClO4)4 shows that each of the two Mn(II) ion centers with a Mn-Mn distance of 7.15 Å are coordinated by one ligand while a common third ligand bridges the metal centers. Solid-state magnetic susceptibility measurements as well as DFT calculations confirm that each of the manganese centers is high-spin S = 5/2. The electronic structure obtained shows no orbital overlap between the Mn(II) centers indicating that the observed weak antiferromagentism is a result of through space interactions between the two Mn(II) centers. Under different reaction conditions, L1 and Mn(II) yielded a one-dimensional polymer, MnL1(H2O)2(ClO4)2. Ligand L2 when reacted with manganese(II) perchlorate gives contrarily to L1 mononuclear MnL2(H2O)2(ClO4)2 complex. The analysis of the structural properties of the MnL2(H2O)2(ClO4)2 lead to the design of dinuclear complex {(μ-Cl)MnL2(PF6)} where two chlorine atoms were utilized as bridging moieties. This complex has a rhomboidal Mn2Cl2 core with a Mn-Mn distance of 3.726 Å. At room temperature {(μ-Cl)MnL2(PF6)} is ferromagnetic with observed μeff = 4.04 μB per Mn(II) ion. With cooling, μeff grows reaching 4.81 μB per Mn(II) ion at 8 K, and then undergoes ferromagnetic-to-antiferromagnetic phase transition. 相似文献
8.
Pei-Pei Yang 《Inorganica chimica acta》2011,371(1):95-99
A polydentate hydroxy-rich Schiff base ligand, derived from the condensation of 3,5-dibromo-2-hydroxybenzaldehyde and 2-ethanolamine, namely 3,5-dibromo- salicylidene-2-ethanolamine (H2L), reacts with Mn(ClO4)2, NaO2CPiv and NaOCH3 to give a novel hexanuclear complex [NaIMnIII5(μ3-O2−)(μ4-O2−)L4(O2CPiv)3)(ClO4)]·1.5CH3OH·0.25H2O (1). The complex has been characterized by IR, elemental analyses, crystal structural analyses, and magnetic studies. The core in complex 1 features one μ3-O2− atom, one μ4-O2− atom, four L2− ligands, three PivCO2− groups together with a ClO4− ion bridging five MnIII atoms and a NaI atom to form a distorted cubane extended at one face by an incomplete adamantane unit, which is an unprecedented structural type in Mn chemistry. The variable-temperature solid-state dc magnetic susceptibility studies in the 2-300 K range for complex 1 reveal the presence of overall antiferromagnetic intracluster interactions. 相似文献
9.
The electrochemical oxidation of anodic metal (iron, cobalt, nickel and copper) in an acetonitrile solution of the potentially chelating Schiff base N,N(dithiodiethylenebis-(aminylydenemethylydene)-bis(1,2-phenylene)ditosylamide (H2L) afforded stable complexes of empirical formula [ML]. The compounds obtained have been characterized by microanalysis, IR spectroscopy and ES-MS mass spectrometry. The crystal and molecular structures of [FeL]·CH3CN (1) [CoL]·CH3CN (2), [NiL]·CH3CN (3) and [CuL]·CH3CN (4) have been determined by X-ray diffraction in all complexes, the metal atom is in a distorted tetrahedral environment with the Schiff base acting as a tetradentate N4 donor. 相似文献
10.
Hydrazone Schiff base-manganese(II) complexes: Synthesis, crystal structure and catalytic reactivity
Five dissymmetric tridentate Schiff base ligands, containing a mixed donor set of ONN and ONO were prepared by the reaction of benzhydrazide with the appropriate salicylaldehyde and pyridine-2-carbaldehyde and characterized by FT-IR, 1H and 13C NMR. The complexes of these ligands were synthesized by treating an ethanolic solution of the appropriate ligand and one equivalent Et3N with an equimolar amount of MnCl2 · 4H2O or alternatively by a more direct route in which an ethanolic solution of benzhydrazide was added to ethanolic solution of appropriate salicylaldehyde and MnCl2 · 4H2O solution to yield [MnCl(L1)(H2O)2], [Mn(L2)2(H2O)2], [MnCl(L3)], [MnCl(L4)] and [MnCl2(H2O)(L5)]. The hydrazone Schiff base ligands and their manganese complexes including HL1-4 and L5 (HL1 = benzoic acid (2-hydroxy-3-methoxy-benzylidene)-hydrazide, HL2 = benzoic acid (2,3-dihydroxy-benzylidene)-hydrazide, HL3 = benzoic acid (2-hydroxy-benzylidene)-hydrazide, HL4 = benzoic acid (5-bromo-2-hydroxy-benzylidene)-hydrazide, L5 = benzoic acid pyridine-2-yl methylene-hydrazide) were characterized on the basis of their FT-IR, 1H and 13C NMR, and molar conductivity. The crystal structures of HL1 and [MnCl2(H2O)L5] have been determined. The results suggest that the Schiff bases HL1, HL2, HL3, and HL4 coordinate as univalent anions with their tridentate O,N,O donors derived from the carbonyl and phenolic oxygen and azomethine nitrogen. L5 is a neutral tridentate Schiff base with N,N,O donors. ESI-MS for the complexes Mn-L2,3,5 provided evidence for the presence of multinuclear complexes in solution. Catalytic ability of Mn-L1-5 complexes were examined and found that highly selective epoxidation (>95%) of cyclohexene was performed by iodosylbenzene in the presence of these complexes and imidazole in acetonitrile. 相似文献
11.
A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing α,α-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)]2 (ONNO2− = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)]2, but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis. 相似文献
12.
The macrocyclic symmetrical and a series of unsymmetrical binuclear copper(II) complexes have been synthesized by using mononuclear complex [CuL] [3,3′-((1E,7E)-3,6-dioxa-2,7-diazaocta-1,7-diene-1,8-diyl)bis(3-formyl-5-methyl-2-diolato)copper(II)]. Another compartment of the [CuL] have been condensed with various diamines like 1,2-bis(aminooxy)ethane (L1), 1,2-diamino ethane(L2a), 1,3-diamino propane(L2b), 1,4-diamino butane(L2c), 1,2-diamino benzene(L2d), 1,8-diamino naphthalene(L2e) and characterized by elemental, spectroscopic, and X-ray crystallographic methods. The influence of the coordination geometry and the ring size of the binucleating ligands on the electronic, redox, magnetic, catecholase activity, DNA binding and cleavage properties have been studied. The molecular structures of the symmetrical binuclear complex [Cu2L1(H2O)2](ClO4)2 (1) and unsymmetrical binuclear complex [Cu2L2b(ClO4)(H2O)]ClO4 (2b) were determined by X-ray crystallography. Both of them were discrete binuclear species in which each Cu(II) ions are in distorted square pyramid. The Cu?Cu distances vary from 3.0308 (2b) to 3.0361 Å (1). Electrochemical studies evidenced that two quasi-reversible one electron-transfer reduction waves −0.91 to −1.01 V, −1.26 to −1.55 V) for binuclear complexes are obtained in the cathodic region. Cryomagnetic investigation of the binuclear complexes reveals a weak antiferromagnetic spin exchange interaction between the Cu(II) ions within the complexes (−2J = 104.4-127.5 cm−1). The initial rate (Vin) for the oxidation of 3,5-di-tert-butylcatechol to o-quinone by the binuclear Cu(II)complexes are in the range 3.6 × 10−5 to 7.3 × 10−5 Ms−1. The binuclear Cu(II) complexes are avid binders to calf thymus DNA. The complexes display significant oxidative cleavage of circular plasmid pBR322 DNA in the presence of mercaptoethanol using the singlet oxygen as a reactive species. The aromatic diamine condensed macrocyclic ligands of copper(II) complexes display better DNA interaction and significant chemical nuclease activity than the aliphatic diamine condensed macrocyclic Cu(II) complexes. 相似文献
13.
The mixed-ligand complexes of manganese(II) of formula [Mn(pyim)2(C5O5)] (1) and [Mn(pyim)(H2O)(C5O5)]n · 2.5nH2O (2) [pyim = 2-(2-pyridyl)imidazole and = croconate (dianion of 4,5-dihydroxy-4-cyclopentene-1,2,3-trione)] have been prepared and their structures determined by X-ray crystallographic methods. Compound 1 is a tris-chelated mononuclear complex where the manganese atom is six-coordinate: four nitrogen atoms from two pyim molecules and two oxygen atoms from a croconate group build a somewhat distorted octahedral surrounding around the metal atom. The resulting neutral mononuclear units are linked to each other through double bridges which are constituted by the imidazole N-H and the metal-coordinated croconate-oxygen atom, the metal-metal separation through this supramolecular pathway being 7.6856(11) Å. Compound 2 is a croconato-bridged manganese(II) uniform chain with an intrachain metal-metal distance of 7.5118(9) Å. A bidentate pyim group, a water molecule and four oxygen atoms from two bis-bidentate croconate ligands build an irregular seven-coordination polyhedron around each manganese atom in 2. The investigation of the magnetic properties of 2 in the temperature range 1.9-295 K has shown the occurrence of a weak antiferromagnetic interaction [J = −0.066 cm−1 with the Hamiltonian defined as H = −J ∑i Si · Si+1] through the bis-bidentate croconate. The ability of the bis-chelating croconate to mediante magnetic interactions between paramagnetic first-row transition metal ions is discussed and compared to that of the related oxalate ligand. 相似文献
14.
Two copper(II) complexes, [Cu(qsal)Cl](DMF) (1) and [Cu2(qsalBr)2Cl2](DMF) (2), with tridentate Schiff base ligands, 8-(salicylideneamino)quinoline (Hqsal) and 8-(5-bromo-salicylideneamino)quinoline (HqsalBr), respectively, were synthesised and structurally characterized. Each copper(II) ion in the two complexes is in a distorted square pyramidal N2OCl2 environment. Complex 1 exists as a polymeric species via equatorial-apical chloride bridges, whereas 2 is a di-chlorido-bridged dinuclear complex, where each bridging chloride simultaneously occupies an in-plane coordination site on one copper(II) ion and an apical site on the other copper(II) ion. Variable-temperature magnetical susceptibility measurements on the two complexes in the temperature range 2-300 K indicate the occurrence of intrachain ferromagnetic (J = +6.58 cm−1) and intramolecular antiferromagnetical (J = −6.91 cm−1) interactions. 相似文献
15.
Rongqing Li Pusu Zhao Yulan Zhu Weiguang Zhang Hongyan Wang 《Inorganica chimica acta》2009,362(11):4081-3393
Oxalate- or 4,4′-bipyridine-bridged dimeric copper(II) complexes, [Cu2L2(μ-ox)] (1) and [Cu2L2(μ-bipy)](BF4)2 (2) [where ox = oxalate, bipy = 4,4′-bipyridine, HL = N-(1H-pyrrol-2-ylmethylene)-2-pyridineethanamine, L− = HL−H+], have been synthesised and characterised by elemental analysis, IR, UV-Vis and single crystal X-ray diffraction. Crystal structure determinations carried out on 1 and 2 reveal that 1 is an oxalate-bridged centrosymmetrical square pyramidal dimeric copper(II) complex while 2 is a 4,4′-bipyridine-bridged non-centrosymmetric square planar dinuclear copper(II) complex. Comparison of the optimised geometries with the corresponding crystal structures suggests that the B3LYP/LANL2DZ level can reproduce the structures of 1 and 2 on the whole. The electronic spectra of 1 and 2 predicted by B3LYP/LANL2DZ method show some blue shifts compared with their experimental data. Thermal analysis carried out on 1 shows that there is only one exothermal peak at about 260 °C and the residue is presumably Cu2O4N6. 相似文献
16.
A series of carboxylate-bridged manganese(III) complexes derived from Schiff bases obtained by the condensation of salicylaldehyde or 5-bromo-salicylaldehyde and different types of diamine have been synthesized and characterized and, in the case of [Mn2(L1)2(μ-ClCH2COO)](ClO4) (1), the structure has been obtained by X-ray crystallography. The structure of 1 consists of two manganese atoms separated by 5.487(3) Å and bridged by a carboxylate anion. This dinuclear structural unit is linked by bridging phenoxy oxygens to adjacent dinuclear units to produce a one-dimensional chain. Cyclic voltammograms of all the compounds exhibit grossly similar features consisting of a reversible or quasi-reversible MnIII/MnII reduction and a MnIII/MnIV oxidation. It has been observed that bromo-substitution stabilizes the lower oxidation state in the MnIII/MnII couple and destabilizes the higher oxidation state in the MnIII/MnIV couple. Variable temperature magnetic susceptibility measurements of 1 show a weak antiferromagnetic interaction. The magnetic behavior is satisfactorily modeled by inclusion of zero-field splitting and an intermolecular interaction component. 相似文献
17.
A macrocyclic ligand possessing a donor set of {N3S2} synthesised via Cs+-templation, 4-(pyridin-2-ylmethyl)-1,7-dithia-4,10-diazacyclododecane (L) and its Cu(II) complex, [CuL(NCMe)]2+ (6), are described. This Cu(II) complex interacts with a range of anions, F−, Cl−, Br−, I−, HCOO−, AcO−, CO32−, NO3−, C2O42−, H2PO4−, SCN−, CN−, BF4−. Of the investigated anions, I−, SCN−, and CN−, show strong interaction with the Cu(II) centre as indicated by their spectral variations. The iodide particularly demonstrates distinct change in colour. This change originates from a newly appeared band at 471 nm upon iodide binding, which arises from the ligand (I−) to Cu(II) charge transfer (LMCT) in the iodide-substituted Cu(II) complex, [CuLI]+ (7). All organic compounds are characterised by NMR spectroscopy and/or microanalysis. The identities of the two Cu(II) complexes are confirmed by using microanalysis and the complex 6 is crystallographically analysed. 相似文献
18.
Tong-Bu Lu Guang-Chuan Ou Long Jiang Xiao-Long Feng Liang-Nian Ji 《Inorganica chimica acta》2005,358(11):3241-3245
Two nickel (II) complexes with the formula [NiL(H2O)2] · 6H2O (1 · 6H2O) and [NiH2L(BDC)]n (2), where L = 3,10-bis(3-propylcarboxyl)-1,3,5,8,10,12-hexaazacyclo-tetradecane, BDC = trans-butene dicarboxylate, have been synthesized and characterized by elemental analyses, IR spectra and single-crystal X-ray analyses. In 1, the Ni(II) ion is six-coordinated with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and two water molecules in axial position. In 2, the structure is made up of one-dimensional chain of [NiH2L]2+ units with BDC2− anions, in which the Ni(II) ion is also six-coordinated with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and two carboxylate oxygen atoms from the BDC2− group in axial position. In 2, the 1D chains are aligned in a parallel mode. 相似文献
19.
Lei Jia Peng Jiang Zhong-yan Hao Long-hai Chen Ning Tang Qin Wang 《Inorganica chimica acta》2010,363(5):855-6176
Three novel ternary copper(II) complexes, [Cu2(phen)2(l-PDIAla)(H2O)2](ClO4)2·2.5H2O (1), [Cu4(phen)6(d,l-PDIAla)(H2O)2](ClO4)6·3H2O (2) and [Cu2(phen)2(d,l-PDIAla)(H2O)](ClO4)2·0.5H2O (3) (phen = 1,10-phenanthroline, H2PDIAla = N,N’-(p-xylylene)di-alanine acid) have been synthesized and structurally characterized by single-crystal X-ray crystallography and other structural analysis. Spectrometric titrations, ethidium bromide displacement experiments, CD (circular dichroism) spectral analysis and viscosity measurements indicate that the three compounds, especially the complex 3, strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants of the ternary copper(II) complexes with CT-DNA are 0.89 × 105, 1.14 × 105 and 1.72 × 105 M−1, for 1, 2 and 3, respectively. Comparative cytotoxic activities of the copper(II) complexes are also determined by acid phosphatase assay. The results show that the ternary copper(II) complexes have significant cytotoxic activity against the HeLa (Cervical cancer), HepG2 (hepatocarcinoma), HL-60 cells (myeloid leukemia), A-549 cells (pulmonary carcinoma) and L02 (liver cells). Investigations of antioxidation properties show that all the copper(II) complexes have strong scavenging effects for hydroxyl radicals and superoxide radicals. 相似文献
20.
Pap JS Kripli B Váradi T Giorgi M Kaizer J Speier G 《Journal of inorganic biochemistry》2011,105(6):911-918
Recently, a series of Fe(II) complexes have been published by our group with 3 N-donor 1,3-bis(2′-Ar-imino)isoindoline ligands containing various Ar-groups (pyridyl, 4-methylpyridyl, thiazolyl, benzimidazolyl and N-methylbenzimidazolyl). The superoxide scavenging activity of the compounds showed correlation with the Fe(III)/Fe(II) redox potentials. Analogous, electroneutral chelate complexes with Mn(II) and Ni(II) in 2:1 ligand:metal composition are reported here. Each Mn(II) complex exhibits one reversible redox wave that is assigned as the Mn(III)/Mn(II) redox transition. The E1/2 spans a 180 mV range from − 98 (Ar = 3-methylpyridyl) to 82 mV (Ar = thiazolyl) vs. the Fc+/Fc depending on the Ar-sidearm. The SOD-like (SOD=superoxide dismutase)activity of all complexes was determined according to the McCord-Fridovich method. The Mn(II) isoindolinates have IC50 values - determined with 50 μM cytochrome c Fe(III) - that range from (3.22 ± 0.39) × 10− 6 (Ar = benzimidazolyl) to (10.80 ± 0.54) × 10− 6 M (Ar = N-methylbenzimidazolyl). In contrast with the Fe(II) complexes, the IC50 concentrations show no significant dependence on the E1/2 values in this narrow potential range emphasizing that the redox potential is not the governing factor in the Mn(II)-containing scavengers. The analogous Ni(II) compounds show no redox transitions in the thermodynamically relevant potential range (− 0.40 to 0.65 V vs. SCE) and accordingly, their superoxide scavenging activity (if any) is below the detection level. 相似文献