首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

2.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

3.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

4.
A tridentate NNO donor Schiff base ligand [(1Z,3E)-3-((pyridin-2-yl)methylimino)-1-phenylbut-1-en-1-ol = LH] in presence of azide ions coordinates with cobalt(II) and copper(II) ions giving rise to three new coordination complexes [Co2(L)21,1-N3)2(N3)2] (1), [Cu2(L)21,3-N3)]·ClO4 (2) and [(μ1,1-N3)2Cu5(μ-OL)21,1-N3)41,1,1-N3)2]n (3). The complexes have been characterized by elemental analysis, FT-IR, UV-Vis spectral studies, and single crystal X-ray diffraction studies. These complexes demonstrate that under different synthetic conditions the azide ions and the Schiff base ligand (LH) show different coordination modes with cobalt(II) and copper(II) ions, giving rise to unusual dinuclear and polynuclear species (1, 2 and 3) whose structural variations are discussed. Magneto-structural correlation for the very rare singly μ1,3-N3 bridged CuII-Schiff base dinuclear species (2) has been studied. In addition, the catalytic properties of 1 for alkene oxidation and the general catalase-like activity behavior of 2 have been discussed.  相似文献   

5.
Dinuclear copper(I) complexes with bridging bis(dicyclohexylphosphino)methane (dcpm) or bis(diphenylphosphino)methane (dppm) and 2,2′-bipyridine or 2-[N-(2-pyridyl)methyl]amino-5,7-dimethyl-1,8-naphthyridine (L), [Cu2(bpy)2(dppm)2](BF4)2 (1), [Cu2(bpy)2(dcpm)](BF4)2 (2), [Cu2(L)(dppm)](BF4)2 (3) and [Cu2(L)(dcpm)](BF4)2 (4) were prepared, and their structures were determined by X-ray crystal analysis. Two-, three-, and four-coordinate copper(I) centers are found in these complexes. Compounds 3 and 4 show close CuI?CuI separations of 2.664(3) and 2.674(1) Å, respectively, whereas an intramolecular copper-copper distance of 3.038 Å is found in 2 having only dcpm as an additional bridge. Powdered samples of 1, 3, and 4 display intense and long-lived phosphorescence with λmax at 533, 575, and 585 nm at room temperature, respectively. In the solid state, 2 exhibits only a weak emission at 555 nm. The time-resolved absorption and emission spectra of these complexes were investigated. The difference in the emission properties among complexes 1-4 suggests that both CuI?CuI distances and coordination environment of the copper(I) centers affect the excited-state properties.  相似文献   

6.
To further investigate the solvent effect on the structures of coordination polymers, a series of polymeric CuII complexes have been synthesized and characterized by single-crystal diffraction through combining of 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid (H2BDC-Cl4) with CuII perchlorate. The products including {[Cu(BDC-Cl4)(py)3] · H2O}n (py = pyridine) (1), {[Cu(BDC-Cl4)(dioxane)(H2O)2] · dioxane}n (2), and {[Cu2(BDC-Cl4)2(DMF)4] · 2G}n (G = MeOH in 3 and G = EtOH in 4) have been obtained in different mixed solvents systems. With the change of the solvent system from pyridine/H2O (1:1) into dioxane/H2O (1:1), the infinite 1-D CuII-BDC-Cl4 chain motif in 1 is tuned into the 2-D (4,4) layered structure in 2 with the coordination of dioxanes to copper atoms. When the solvent system is changed into DMF/MeOH (1:1), then into DMF/EtOH (1:1), similar 1-D CuII-BDC-Cl4 double chains are afforded in 3 and 4 with different solvents inclusion. Moreover, the judicious choice of binding-guests leads to numerous coordination geometries of CuII centers and final dissimilar supramolecular lattices of 1-4 from 1-D to 3-D via robust hydrogen-bonding interactions. The spectroscopic, thermal, and fluorescent properties of 1-4 have also been investigated.  相似文献   

7.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

8.
The unsymmetric dinucleating ligand N-(2-hydroxybenzyl)-N,N′,N′-tris(2-pyridylmethyl)-1,3-diaminopropan-2-ol (L = H2btppnol) and the corresponding copper(II) complex [Cu2(Hbtppnol)(μ-CH3COO)](ClO4)2 (1) have been recently reported in part in a short communication [Inorg. Chem. Commum. 8 (1999) 334]. In this study, we investigated the ability of complex 1 to promote the hydrolysis of P-O phosphate diester bonds in bis(2,4-dinitrophenyl) phosphate (2,4-BDNPP) and the cleavage of genomic and plasmid DNA molecules. Reaction of 1 with excess of the diester 2,4-BDNPP, at pH 7.0, results in the formation of the monoester phosphate coordinated [Cu2(Hbtppnol)(μ-((NO2)2-C6H3)PO4)]ClO4 (3) complex, which was also characterized by X-ray crystallography. In addition, the stable μ-phosphate complex [Cu2(Hbtppnol)(μ-(NO2-C6H4)PO4)](ClO4) (2) obtained from the reaction of 4-nitrophenyl phosphate with complex 1 was also characterized by X-ray crystallography, indicating that 1 is unable to cleave monoester-phosphate bonds. The kinetics for the promotion of bis(2,4-dinitrophenyl) phosphate (2,4-BDNPP) hydrolysis by complex 1 was investigated as a function of pH, catalyst concentration and substrate concentration. On the basis of kinetic and potentiometric studies, the deuterium isotope effect (kH/kD ∼ 1) and the X-ray structure of the monoester phosphate coordinated [Cu2(Hbtppnol)(μ-((NO2)2-C6H3)PO4)]ClO4 (3) complex as the product of the reaction, we demonstrated that the aquo/hydroxo complex is the active species and the reaction occurs through the formation of a ternary complex in which one CuII binds the substrate and the second copper center has a terminal bound hydroxide to attack the phosphorus atom, at physiological pH. A rate enhancement factor of ∼100 was calculated relative to that measured for the uncatalyzed reaction under identical conditions. Complex 1 effectively promotes the cleavage of double-stranded genomic and plasmid DNA, at physiological pH, probably through a hydrolytic mechanism in agreement with that proposed for the reaction of 1 with 2,4-BDNPP. Finally, cytotoxic activity of 1 in a human small cell lung carcinoma cell line (GLC4) and its cisplatin resistant subline (GLC4/CDDP) was studied and the IC50 values were determined.  相似文献   

9.
The syntheses of the aliphatic bidentate guanidine-amine-hybrid ligands DMEGdmae (L1), TMGdmae (L2), TMGdeae (L3) and DPipGdmae (L4) as well as the reaction of their Cu(I) complexes with molecular oxygen (monitored by UV-Vis spectroscopy) are reported. The molecular structures of 10 bis(μ-hydroxo) dicopper complexes based on these ligands are described. The solid state structures of [Cu2(μ-OH)2(DMEGdmae)2]X2 (X = I (1), CF3SO3 (2), SbF6 (3), PF6 (4)), [Cu2(μ-OH)2(TMGdmae)2]X2 (X = I (5), CF3SO3 (6)), [Cu2(μ-OH)2(TMGdeae)2]Cu2I4 (7) and [Cu2(μ-OH)2(DPipGdmae)2]X2 (X = CF3SO3 (8), SbF6 (9), PF6 (10)) show a square-planar distorted coordination of the copper(II) ion. The bis(μ-hydroxo) dicopper complex 1 exhibits a Cu···Cu distance of 2.860(1) Å, which is one of the smallest observed for hydroxo-bridged copper compounds so far. The influence of the anion on the structure of the bis(μ-hydroxo) dicopper(II) unit is analyzed for the reported complexes and a literature overview with emphasis on the structural characteristics of the Cu2O2 moiety of bis(μ-hydroxo) dicopper(II) and bis(μ-oxo) dicopper(III) is given.  相似文献   

10.
In order to further understand the coordination chemistry of diazamesocyclic systems, a series of mononuclear NiII complexes with 1,4-diazacycloheptane (DACH) functionalized by additional imidazole or pyridine donor pendants, including [NiL1](ClO4)2 · H2O (1), [NiL1Cl](ClO4) (2), [NiL2Cl](ClO4) · CH3OH (3), [NiL2Cl][NiL2](ClO4)3 (4) and [NiL3](ClO4)2 (5), where L1 = 1,4-bis(N-1-methylimidazol-2-yl-methyl)-1,4-diazacycloheptane, L2 = 1,4-bis(pyridyl-2-yl-methyl)-1,4-diazacycloheptane, and L3 = 1,4-bis-(imidazol-4-yl-methyl)-1,4-diazacycloheptane, have been prepared and characterized. A detailed study on the solid structures and solution spectra of these complexes indicates that tetradentate ligands L1, L2 and L3 would lead to new NiII complexes with different coordination environments in the solid states and solution. The N-methyl substituted imidazole functionalized ligand L1 forms green compound 2 and yellow product 1; while the pyridine functionalized ligand L2 affords red product 4 and green complex 3; the ligand L3 results in only one stable mononuclear NiII product 5. The solution behaviors of these interesting compounds were also investigated by UV-Vis technique.  相似文献   

11.
Three distinct coordination complexes, viz. {[Cu(μ-L)2] · (H2O)4}n (1), [Ni(L)2(CH3OH)2] (2), and [Zn(L)2(H2O)2] · (H2O)2 (3), have been prepared by the reactions of metal nitrates with isoquinoline-3-carboxylic acid (HL). X-ray single-crystal diffraction suggests that 1 is a 1D chain coordination polymer in which the CuII ions are connected by carboxylates, whereas complexes 2 and 3 represent discrete mononuclear species. In all the cases, the coordination entities are further organized via hydrogen-bonding interactions to generate multifarious supramolecular networks. Remarkably, a well-resolved 1D water morphology is observed for the first time in the crystalline lattice of 1 along [1 0 0], which consists of edge-sharing tetrameric subunits and stabilized by the metal-organic host surroundings.  相似文献   

12.
The synthesis and crystal structure of four new copper(I) and copper(II) supramolecular amine, and amine phosphonate, complexes is reported. Reaction of copper(I) with 2-,9-dimethyl-1-10-phenanthroline (dmp) produced a stable 4-coordinate Cu(I) species, [Cu(I)(dmp)2]Cl · MeOH · 5H2O (2), i.e., the increased steric hindrance in the ‘bite’ area of dmp did not prevent interaction with the metal and provided protection against oxidation which was not possible for the phen analogue [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36]. Subsequent addition of phenylphosphonic acid to (2) produced two structures from alternative synthetic routes. An ‘in situ’ process yielded red block Cu(I) crystals, [Cu(I)(dmp)2] · [C6H5PO3H2 · C6H5PO3H] (4), whilst recrystallisation of (2) prior to addition of the acid (‘stepwise’ process) produced a green, needle-like Cu(II) complex, [Cu(II)(dmp) · (H2O)2 · C6H5PO2(OH)] [C6H5PO2(OH)] (3). However, addition of excess dmp during the ‘stepwise’ process forced the equilibrium towards product (4) and resulted in an optimum yield (99%). The structure of (4) was similar to the phen analogue, [Cu(II)Cl(phen)2] · [C6H5PO2(OH) · C6H5PO(OH)2] (1) [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36], but the presence of dmp exerted some influence on global packing, whilst (3) exists as a polymeric layered material. In contrast, reaction of copper(I) with di-2-pyridyl ketone (dpk), followed by phenylphosphonic acid produced purple/blue Cu(II) species, [Cu(II)(dpk · H2O)2] Cl2 · 4H2O (5), and [Cu(II)(dpk · H2O)2] · [C6H5PO2(OH)2 · C6H5PO(OH)2] (6), respectively, i.e., in both cases oxidation of copper occurred. Solid-state luminescence was observed in (2) and (4). The latter showing a 5-fold enhancement in intensity.  相似文献   

13.
Copper(II) complexes of N4-donor ligands containing imidazole moieties, 4-[bis(1-methylimidazole-2-yl-methyl)aminomethyl]imidazole (Him-im2) and 4-[bis(1-methylimidazole-2-yl-methyl)aminoethyl]imidazole (Hhis-im2), were prepared, and [Cu(Him-im2)Cl]ClO4 (1) and [Cu(Hhis-im2)Cl]ClO4 (2) were structurally characterized by the X-ray diffraction method. Complexes 1 and 2 have a mononuclear structure with a coordinated chloride ion. The geometry of the Cu(II) center in 1 was found to be 5-coordinate trigonal-bipyramidal, whereas that of 2 was square-pyramidal. Complexes 1 and 2 showed different absorption and EPR spectra in MeOH, indicating that these compounds in solution maintain the structures revealed in the solid state. On the other hand, the reaction of Him-im2 with Cu(ClO4)2 · 6H2O under basic conditions gave a tetranuclear Cu(II) complex, [Cu4(im-im2)4](ClO4)4 (3), whereas using the ligand Hhis-im2 gave two kinds of polynuclear complexes [Cu4(his-im2)4](ClO4)4 (4) and [Cu6(his-im2)6](ClO4)6 (5) exhibiting discretely different structures. X-ray crystal structure analysis of the polynuclear complexes revealed their cyclic structures bridged by the imidazolate moiety. The geometry difference of the Cu(II) centers between 1 and 2 is thus concluded to determine the structures of tetranuclear complexes 3 and 4, respectively. Temperature dependent magnetic susceptibility measurements of complexes 3, 4, and 5 have shown an antiferromagnetic exchange interaction with a coupling constant of J = −32.5, −27.1 and −22.8 cm−1, respectively.  相似文献   

14.
Two hitherto unknown mixed-ligand tris chelated complexes containing 2-aminothiophenolate, [Et4N]2[MIV(NH-(C6H4)-S)(mnt)2] (M = Mo, 1a; W, 2a) and two mixed-ligand tris chelate complex containing N,N-diethyldithiocarbamate, [Et4N]2[MIV(Et2NS2)(mnt)2] (M = Mo, 1b; W, 2b) have been synthesized and characterized structurally. Although these complexes are supposed to be quite similar to the well-known symmetric tris chelate complexes of maleonitriledithiolate (mnt), [Et4N]2[MIV(mnt)3] (M = Mo, 1c; W, 2c), but display both trigonal prismatic and distorted trigonal prismatic geometry in their crystal structure indicating the possibility of an equilibrium between these two structural possibilities in solution. Unlike extreme stability of 1b, 2b, 1c and 2c, both 1a and 2a are highly unstable in solution. In contrast to one reversible reduction in case of 1b and 2b, 1a and 2a exhibited no possible reduction up to −1.2 V and two sequential oxidation steps which have been further investigated with EPR study. Differences in stability and electrochemical behavior of 1a, 1b, 2a and 2b have been correlated with theoretical calculations at DFT level in comparison with long known 1c and 2c.  相似文献   

15.
Four octamolybdate-based compounds, that is, CuII2(L1)4(Mo8O26) (1), CuII2(HL2)4(Mo8O26)2 (2), [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (3) and [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (4) (L1 = 2-(2-pyridyl)imidazole, L2 = 2-(1-(pyridine-3-ylmethyl)-1H-imidazol-2-yl)pyridine), have been hydrothermally synthesized via changing the reaction conditions and structurally characterized by single-crystal X-ray diffraction. With L1 ligand, we obtained compound 1, which is a 0D molecule and extends to a 3D supramolecular structure via hydrogen-bonding interactions. By using L2 instead of L1 ligand, compound 2 comes into being which is as well a discrete molecule and further extended to a 3D supramolecular structure by hydrogen bonds. Intriguingly, compounds 3 and 4 are supramolecular isomers: the former is a 2D 4-connected network and the latter is a 3D (3,4)-connected framework. The measurements of diffuse reflectance for compounds 1-4 indicate that they are potential wide gap semiconductors.  相似文献   

16.
Metathesis reaction between equimolar amount of [Et4N][GaCl4] and Na2edt in methanol resulted in the formation of the dichloro complex [Et4N][Ga(edt)Cl2] (1), whereas reaction of [Et4N][GaCl4] with two equivalents of Na2edt in methanol gave the complex [Et4N][Ga(edt)2] (2) which can act as a metalloligand. Treatment of 2 with M(PPh3)2NO3 in DMF/CH2Cl2 afforded the heterobimetallic complexes [Ga(edt)2M-(PPh3)2] (M = Cu 3, Ag 4) in moderate yields. The structures of 1-4 were determined by single-crystal X-ray diffraction analyses. Both [Ga(edt)Cl2] and [Ga(edt)2] anions have a distorted tetrahedral geometry. The former consists of one five-membered ring formed by chelating dithiolate and two terminal chloride atoms while the latter consists of two five-membered rings formed by two the chelating dithiolates. Complexes 3 and 4 consist of metalloligand [Ga(edt)2] anion chelated to [M(PPh3)2]+via the sulfur atoms. Both tetrahedrally coordinated Ga and Cu(Ag) atoms are bridged by two sulfur atoms, forming a planar “GaS2M” (M = Cu, Ag) core. Thermogravimetry analysis revealed that heterobimetallic complexes 3 and 4 decomposed to give the corresponding ternary metal sulfide materials.  相似文献   

17.
A systematic investigation of the CuCl2/Mebta (Mebta = 1-methylbenzotriazole) reaction system is described, involving the determination of the influence of the CuII:Mebta ratio, the nature of solvent and the presence of counterions on the identity of the reaction products. As a consequence, complexes [Cu2Cl4(Mebta)4] (1), [CuCl2(Mebta)2] (2), {[Cu2Cl4(Mebta)2]}n (3), [Cu4OCl6(Mebta)4] · 0.25H2O (4 · 0.25H2O) and [Cu2Cl2(Mebta)6](ClO4)2 (5) have been isolated and structurally characterized by single-crystal X-ray studies. Mebta behaves as a monodentate ligand binding through N(3). 1 is a dinuclear complex, the structure of 2 consists of discrete monomeric units, and that of 3 is composed of linear, well-separated polymeric chains of CuII atoms. The molecules of 4 · 0.25H2O have a central μ4-oxide ion surrounded tetrahedrally by four CuII atoms. In the cations of 5 the two CuII centres are asymmetrically bridged by two chloro ligands, with three Mebta molecules completing five coordination at each metal. Complexes were characterized by spectroscopic (IR, far-IR, solution UV/Vis) and thermal decomposition (TG, DTG, and DTA) techniques. Variable-temperature magnetic susceptibility data for 1, 3 and 5 showed intramolecular (1, 5) and intrachain (3) ferromagnetic exchange interactions. Estimates of the Jparameters, experimentally derived, were in close agreement with a new magneto-structural criterion developed by us, holding for bis(μ-chloro) copper(II) dimers. A comparison between the CuCl2/Mebta and CuBr2/Mebta systems is also presented.  相似文献   

18.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RNHC(S)NHP(S)(OiPr)2 [R = pyridin-2-yl (HLa), pyridin-3-yl (HLb), 6-amino-pyridin-2-yl (HLc)] with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to mononuclear [Cu(PPh3)2La,b-S,S′] (1, 2) and [Cu(PPh3)Lc-S,S′] (3) complexes. Using copper(I) iodide instead of Cu(PPh3)3I, polynuclear complexes [Cun(L-S,S′)n] (4-6) were obtained. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy, ES-MS and elemental analyses. The crystal structures of Cu(PPh3)2Lb (2) and Cu(PPh3)Lc (3) were determined by single-crystal X-ray diffraction.  相似文献   

19.
The synthesis and structural characterization of the copper salts [Cu2(2-Boc-benzoate)4(dme)2] (1), [Cu(2-Boc-benzoate)2(tmeda)] (2), [Cu2(2-Boc-benzoate)2(dppm)] (3), [Cu(2-Boc-nicotinate)(PPh3)2] (4), [Cu2{2-Boc-5,6-anhydride-naphthylcarboxylate}2(dppm)2] (5) [dme = 1,2-dimethoxyethane, dppm = bis(diphenylphosphino)methane, tmeda = N,N′-tetramethylethylenediamine, Boc = tert-butoxycarbonyl] prove that cyclic organic anhydrides and dianhydrides readily insert into the Cu-O bond of [CuOtBu] forming carboxylate ligands with ester functionalities in the ligand periphery. [Sb(CO2Ph-o-CO2Me)2(OMe)(tmeda)] (6) was synthesised by insertion reaction of Sb(OMe)3 with phthalic anhydride.  相似文献   

20.
The scope of formation and structures of tungsten-iron-sulfur clusters has been explored using reactions based on [(Tp*)WS3]1− (1) as the ultimate precursor. The reaction system 1/FeCl2/NaSEt/S affords the cubane cluster [(Tp*)WFe3S4Cl3]1− (2), which with NaSEt is converted to [(Tp*)WFe3S4(SEt)3]1− (3).Clusters 2 and 3 contain the cubane [WFe33-S)4]3+ core.Complex 1 with FeCl2/NaSEt forms [(Tp*)WFe2S3Cl2(SEt)]1− (4) with the cuboidal [WFe22-S)23-S)(μ2-SR)]2+ core.Treatment of 2 with excess Et3P yields the edge-bridged double [(Tp*)2W2Fe6S8(PEt3)4] (5) with the [W2Fe63-S)64-S)2] core. Reaction of 2 with excess leads a mixture of products, from which [(Tp*)2W2Fe5S9Na(SH)(MeCN)]3−(6) was identified.This cluster, as closely related [(Tp)2Mo2Fe6S9(SH)2]3−, exhibits a core topology [W2Fe5Na(μ2-S)23-S)66-S)] very similar to the PN cluster of nitrogenase. All reactions were carried out in acetonitrile. The structures of 2-6 were established crystallographically as Et4N+ salts. In the cubane series, substitution of tungsten for molybdenum decreases the [MFe3S4]3+/2+ redox potential by ca. 0.20 V but has a negligible effect on electron distribution. This work expands the small set of previously known weak-field W-Fe-S clusters, demonstrates the existence of tungsten-containing edge-bridged double cubanes and clusters with the PN core topology, and introduces a new cuboidal core structure as found in 4 (Tp = hydrotris(pyrazolyl)borate, Tp* = hydrotris(3,5-dimethylpyrazolyl)borate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号