首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee were examined in the laboratory. Exposed to 45 different combinations of temperature (10–30 °C) and salinity (0–40) under saturating irradiance, G. instriatum exhibited its maximum growth rate of 0.7 divisions/day at a combination of 25 °C and a salinity of 30. Optimum growth rates (>0.5 divisions/day) were observed at temperatures ranging from 20 to 30 °C and at salinities from 10 to 35. The organism could not grow at ≤10 °C. In addition, G. instriatum burst at a salinity of 0 at all temperatures, but grew at a salinity of 5 at temperatures between 20 and 25 °C. It is noteworthy that G. instriatum is a euryhaline organism that can live under extremely low salinity. Factorial analysis revealed that the contributions of temperature and salinity to its growth of the organism were almost equal. The irradiance at the light compensation point (I0) was 10.6 μmol/(m2 s) and the saturated irradiance for growth (Is) was 70 μmol/(m2 s), which was lower than Is for several other harmful dinoflagellates (90–110 μmol/(m2 s)).  相似文献   

2.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

3.
The first recorded bloom of Karenia spp., resulting in brevetoxin in oysters, in the low salinity waters of the Northern Gulf of Mexico (NGOMEX) occurred in November 1996. It raised questions about the salinity tolerance of Karenia spp., previously considered unlikely to occur at salinities <24 psu, and the likelihood that the bloom would reoccur in the NGOMEX. Salinity was investigated as a factor controlling Karenia spp. abundance in the field, using data from the NGOMEX 1996 bloom and Florida coastal waters from 1954 to 2004, and growth and toxin production in cultures of Karenia brevis (Davis) G. Hansen and Moestrup. During the NGOMEX bloom, Karenia spp. occurred much more frequently at low salinities than in Florida coastal waters over the last 50 years. The data suggest that the NGOMEX bloom started on the NW Florida Shelf, an area with a higher frequency of Karenia spp. at low salinities than the rest of Florida, and was transported by an unusual westward surface current caused by Tropical Storm Josephine. The minimum salinity at which growth occurred in culture ranged between 17.5 and 20 psu, but the optimal salinity ranged between low values of 20 or 25 and high values of 37.5–45 psu, depending on the clone. The effect of salinity on toxin production in one clone of K. brevis was complex, but at all salinities brevetoxin levels were highest during the stationary growth phase, suggesting that aging, high density blooms may pose the greatest public health threat. The results demonstrate that Karenia spp. can be a public health threat in low salinity areas, but the risk in the NGOMEX is relatively low. No bloom has occurred since the 1996 event, which was probably associated with a special set of conditions: a bloom along the Florida Panhandle and a tropical storm with a track that set up a westward current.  相似文献   

4.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   

5.
The combined effects of temperature and salinity on growth of Alexandrium monilatum were studied in laboratory cultures. This toxic, red-tide dinoflagellate grew faster with higher temperatures, up to a maximum of approximately 1 division per day at 31 °C. Salinities above 15 psu had a lesser effect on growth rate, as might be expected for an estuarine species. Growth rates of cultures exposed to natural light and temperature fluctuations were comparable to laboratory cultures. The minimum N cell quota suggested that high N flux would be required to support bloom development. A literature survey of documented A. monilatum blooms indicated that within US waters, blooms occur in July–September in nearshore or estuarine regions of the Gulf of Mexico and the Florida Atlantic coast. Temperature and salinity measured during blooms correspond to the optimal growth conditions of the laboratory cultures. Nevertheless, the occurrence of A. monilatum blooms is sporadic compared to the occurrence of seemingly optimal growth conditions. Laboratory growth experiments predict when blooms of this species are unlikely due to low growth rates, but so far cannot predict individual blooms.  相似文献   

6.
Culture experiments on the toxic Nodularia spumigena strain NSGG-1 isolated from the Gulf of Gdańsk showed a significant effect of salinity on growth and nodularin production. Growth of the NSGG-1 strain, was optimal between 7 and 18 psu, lower at 3 and 24 psu and was significantly inhibited at the extreme salinities of 0 and 35 psu. Nodularin (NOD) content of N. spumigena, estimated by the NOD/Chla ratios, correlated positively with salinity and increased from 0 to 35 psu. The NOD/Chla ratio on day 10 of growth was high, and, reached the maximum at day 30. A sudden increase in salinity from 7 to 18 and 35 psu resulted in plasmolysis of Nodularia cells. Salinity was also observed to have other effects on NSGG-1; the filaments were longest at 7 psu, while an increased number of akinetes were formed at 35 psu. The number of heterocytes was markedly reduced at the extreme salinities. This latter finding might explain why Nodularia blooms do not occur outside a certain salinity range in nitrogen-deficient waters.  相似文献   

7.
Germination responses of Diplotaxis harra to temperature and salinity   总被引:1,自引:1,他引:0  
Diplotaxis harra (Forssk.) Boiss, an annual herb in the family of Brassicaceae, is widely distributed in many sandy and gypseous areas in southern Tunisia. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after seed transfer to distilled water. The germination responses of the seeds in complete darkness were determined over a wide range of temperatures (5, 10, 15, 20, 25 and 30 °C) and salinities (0, 50, 100, 150 and 200 mM NaCl). Germination was inhibited by either an increase or decrease in temperature from the optimal temperature (15 °C). Highest germination percentages were obtained under non-saline conditions and an increase in NaCl concentrations progressively inhibited seed germination. Rate of germination decreased with an increase in salinity at all temperatures but comparatively higher rates were obtained at 15 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 200 mM NaCl. Seeds were transferred from salt solution to distilled water after 20 days, and those from low salinities recovered at all temperatures. At NaCl concentration of 200 mM, the recovery of germination was completely inhibited.  相似文献   

8.
During their reproductive period, females of Crepipatella dilatata deposit their embryos in capsules that they then brood in the pallial cavity until juveniles emerge several weeks later, after passing through a transient veliger “larval” stage. Artificially excapsulated veligers of this species experimentally exposed to a wide range of salinities (5, 10, 15, 20, 25, and 30 psu) for six hours showed reduced activity at salinities of 15 and 20 psu, whereas encapsulated veligers exposed to those same salinities showed no reduction of activity. Artificially excapsulated veligers showed high mortality at salinities of 5 and 10 psu; encapsulated embryonic stages also showed high mortalities at 5 psu and serious sublethal effects at 10 psu in tests excluding maternal protection, showing that encapsulation alone does not provide complete protection from low salinity stress. Natural tidal cycles in the Quempillén River estuary also reduced embryonic survival at salinities of ≤ 10 psu when the capsules were exposed without maternal protection. In contrast, encapsulated embryos protected by their mothers survived well regardless of the salinity to which they were exposed, under both natural and laboratory-simulated estuarine tidal cycles. C. dilatata are able to develop in the estuary only because of maternal protection, since salinity levels in this environment sometimes decline to as low as 7 psu. Successful embryonic development in this estuary reflects the capacity of C. dilatata adults to detect dangerously low salinity levels and then seal themselves off from the environment for up to 50 hrs (O. Chaparro pers. obs.) when the salinity drops below 22.5 psu, allowing salinity to remain above this level within the pallial cavity despite continued salinity declines in the surrounding seawater.  相似文献   

9.
The potentially toxic diatom Pseudo-nitzschia is common in the northern Gulf of Mexico. Seven sites along the Alabama Gulf Coast have been monitored weekly to bi-weekly for Pseudo-nitzschia spp., which were detected in 489 of 829 samples (59%) taken between November 2003 and July 2008. Mean population density peaked at 19.6 ± 3.2 °C but bloom densities (>106 cells L−1) occurred at 20–32 °C. Mean population density peaked at a salinity of 30.1 ± 3.2, with blooms occurring between salinities of 26 and 32. Peaks in abundance occurred in April–May, with secondary peaks in fall. A cluster analysis of the relative frequency distributions of abundance by site showed that Little Lagoon Pass had a strong dissimilarity compared to other sites, due to a higher frequency of bloom densities and a lower frequency of absences. Salinities at Little Lagoon Pass were higher and less variable than at other sites. Pseudo-nitzschia spp. were absent more frequently from sites at the mouths of Perdido and Mobile Bays, where salinity was lower and more variable. Freshwater transport from Baldwin County, which lies between these bays, has previously been shown to be primarily through submarine groundwater discharge into the Gulf of Mexico. Groundwater in Baldwin County has high nitrate concentrations and discharge is most likely to occur adjacent to Little Lagoon. Blooms of Pseudo-nitzschia spp. at Little Lagoon Pass in spring were highly correlated with discharge from the Styx River, a proxy for groundwater discharge. Little Lagoon Pass may therefore be a hot-spot for blooms of Pseudo-nitzschia spp., because local maxima in discharge result in nutrient availability without significant reductions in salinity.  相似文献   

10.
We used a double germination phenology or “move-along” experiment (sensu Baskin and Baskin, 2003) to characterize seed dormancy in two medicinal woodland herbs, Collinsonia canadensis L. (Lamiaceae) and Dioscorea villosa L. (Dioscoreaceae). Imbibed seeds of both species were moved through the following two sequences of simulated thermoperiods: (a) 30/15 °C→20/10 °C→15/6 °C→5 °C→15/6 °C→20/10 °C→30/15 °C, and (b) 5 °C→15/6 °C→20/10 °C→30/15 °C→20/10 °C→15/6 °C→5 °C. In each sequence, seeds of both species germinated to high rates (>85%) at cool temperatures (15/6 and 20/10 °C) only if seeds were previously exposed to cold temperatures (5 °C). Seeds kept at four control thermoperiods (5, 15/6, 20/10, 30/15 °C) for 30 d showed little or no germination. Seeds of both species, therefore, have physiological dormancy that is broken by 12 weeks of cold (5 °C) stratification. Morphological studies indicated that embryos of C. canadensis have “investing” embryos at maturity (morphological dormancy absent), whereas embryos of D. villosa are undeveloped at maturity (morphological dormancy present). Because warm temperatures are required for embryo growth and cold stratification breaks physiological dormancy, D. villosa seeds have non-deep simple morphophysiological dormancy (MPD). Neither species afterripened in a 6-month dry storage treatment. Cold stratification treatments of 4 and 8 weeks alleviated dormancy in both species but C. canadensis seeds germinated at slower speeds and lower rates compared to seeds given 12 weeks of cold stratification. In their natural habitat, both species disperse seeds in mid- to late autumn and germinate in the spring after cold winter temperatures alleviate endogenous dormancy.  相似文献   

11.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

12.
The toxic dinoflagellate Protoceratium reticulatum (Claparède & Lachmann) Buetschli is recurrently present in the Adriatic sea. It is the producing organism of yessotoxin (YTX) and some of its analogues and thus its presence in seawater often results in shellfish farm closure for long periods. However, molluscs become highly toxic also at the presence of low cell concentrations, due to the high YTX content present in most algal strains. As no data were available on the environmental conditions favouring growth and YTX production by Adriatic P. reticulatum strains, in the present work, we investigated the effect of nutrient limitation, salinity and temperature on growth and YTX content in P. reticulatum cultures. Liquid chromatography–mass spectrometry (LC–MS) analyses were carried out to determine YTX production as well as the difference between the YTX amount retained in cells and that released in growth medium, in order to relate cell content to excretion mechanisms. The toxin content was determined in cells collected at the stationary phase, since both toxin production and release were found to be higher in this growth stage than in the exponential phase. As for nutrient-effect, a severe P-limitation strongly affected cell growth and favoured toxin accumulation, as consequences of both impaired cell division and lower toxin release. N-limited cultures, on the contrary, had a toxin content similar to controls and the highest percentage of release. P. reticulatum was confirmed to be tolerant towards salinity changes as it could grow at salinity values in the range of 22–42. The highest YTX production was observed at intermediate salinity values (32) whereas toxin release, expressed as percentage of the total amount produced, decreased as salinity increased. P. reticulatum growth was impaired in cultures kept at 26 °C in respect to those grown at 16 and 20 °C. YTX release decreased as temperature increased; however, cells kept at 26 °C displayed a very high YTX content. The environmental implications of these physiological behaviours highlight that farmed molluscs can become less toxic in colder waters at lower salinity values.  相似文献   

13.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

14.
The reproductive and developmental biology of Gonatocerus ashmeadi Girault, a parasitoid of the glassy-winged sharpshooter Homalodisca coagulata (Say), was determined at five constant temperatures in the laboratory: 15; 20; 25; 30; 33 °C. At 30 °C, G. ashmeadi maintained the highest successful parasitism rates with 46.1% of parasitoid larvae surviving to adulthood. Lifetime fecundity was greatest at 25 °C and fell sharply as temperature either increased or decreased around 25 °C. Temperature had no effect on sex ratio of parasitoid offspring. Mean adult longevity was inversely related to temperature with a maximum of 20 days at 15 °C to a minimum of eight days at 33 °C. Developmental rates increased nonlinearly with increasing temperatures. Developmental rate data were fitted with the modified Logan model for oviposition to adult development times across each of the five experimental temperatures to determine optimal and upper lethal temperature thresholds. The lower developmental threshold estimated by the Logan model and linear regression were 1.10 and 7.16 °C, respectively. Linear regression of developmental rate for temperatures 15–30 °C indicated that 222 degree-days were required above a minimum threshold of 7.16 °C to complete development. A temperature of 37.6 °C was determined to be the upper development threshold with optimal development occurring at 30.5 °C. Demographic parameters were calculated and pseudo-replicates for intrinsic rate of increase (rm), net reproductive rates (Ro), generation time (Tc), population doubling time (Td), and finite rate of increase (λ) were generated using the bootstrap method. Mean bootstrap estimates of demographic parameters were compared across temperatures using ANOVA and nonlinear regression.  相似文献   

15.
The influence of light and temperature on the cylindrospermopsin (CYN) production of two Aphanizomenon flos-aquae strains, isolated from North-eastern German lakes, was investigated with semi-continuously growing cultures. A light gradient from 10 to 60 μE m−2 s−1 in combination with temperatures of 16, 20, and 25 °C was tested.CYN concentrations varied by a maximum factor of 2.7 in strain 10E9 with a significant decrease with increasing temperature. Strain 22D11 showed less pronounced changes, i.e. by a factor of 1.6, and without clear relationship to temperature.Reaction patterns of CYN production to changing light intensities are different at different temperatures. In both strains CYN concentrations increase significantly at 20 °C between 10 and 60 μE m−2 s−1, whereas they decrease significantly at 25 °C in the same light gradient. The amount of synthesised CYN is not reflected by growth rates of the strains in a uniform manner. Nonetheless several temperature–light combinations which constitute physiological stress seem to trigger CYN production and particularly CYN release from cells. The lowest growth rate observed at 16 °C and 60 μE m−2 s−1 of strain 22D11 may reflect photoinhibition due to the lower temperature and related limited CO2-fixation. Under these conditions, extracellular CYN concentrations increased to 58% of total CYN, while the share of extracellular CYN of all other light and temperature regimes was 11–26%. From the results and the experimental design we conclude an active release of the toxin into medium to be more likely than mere leakage from cells.  相似文献   

16.
We studied the effect of salinity on growth, fat reserves and condition of the Baltic herring (Clupea harengus membras) juveniles in order to determine their optimum salinity. About 5 months old fish were reared in four salinities (5.7, 8, 12 and 15 psu) over a period of 1.5 months in constant temperature (+6°C) and photoperiod (light:dark = 12 h:12 h). Uptake of radioactively labelled glycine (14C-glycine) by the scales was used as an indicator of growth rate. The amount of mesenteric fat varied among individuals, but fish kept in 12 psu had significantly more fat in their body cavity and also their somatic condition was better (P < 0.05) than in juveniles kept in the other salinities. Incorporation of 14C-glycine by the scales was dependent not only on salinity, but also on the method of scale sampling. Part of the scales sampled was non-growing and therefore unsuitable for the analysis of growth. Using the growing scales in the analysis, the current growth rate of herring juveniles was highest in salinities of 8 and 12 psu. Fat reserves, somatic condition and growth rate suggested that Baltic herring juveniles have their optimum salinity in 8–12 psu, which is somewhat higher than the salinity in most of the nursery grounds in the Baltic Sea.  相似文献   

17.
Ecophysiological responses of Litopenaeus vannamei were evaluated as functions of environmental salinity and animal size. Growth rate, routine metabolic rate, limiting oxygen concentration, and marginal metabolic scope were determined for L. vannamei acclimated to, and tested at, salinities of 2, 10, and 28 ppt, all at 28 °C. Routine metabolic rate (RMR), estimated as oxygen-consumption rate per unit body weight for fasted, routinely-active shrimp, was independent of salinity but decreased with increasing shrimp weight. Limiting oxygen concentration for routine metabolism (LOCr) decreased with increased shrimp weight for the 10 and 28 ppt treatments, but not for the 2 ppt treatment. Marginal metabolic scope (MMS = RMR/LOCr) also decreased with increasing shrimp weight and was independent of salinity. Growth rate was significantly less at 2 ppt than at either 10 or 28 ppt, which gave similar growth rates.  相似文献   

18.
Morphology, total sulfur content and stable sulfur isotopic composition of Zostera marina were examined in the Baltic Sea–Skagerrak transition zone through surveys. The seagrass meadows were denser and less productive at the low salinities in the Baltic Sea (salinity 6–7 psu), and total sulfur accumulations in plants were lower and δ34S values were higher compared to the west coast of Sweden (salinity 21–29 psu). The δ34S values of the three plant compartments (leaves, rhizomes, roots) indicated lower sulfide invasion at low salinities, which was mainly due to environmental conditions (e.g. low epiphytic biomass, low sediment organic matter and low sulfate concentration) and plant characteristics (productivity, shoot morphology). Between 13% and 63% of the sulfur in the plants was derived from sediment sulfides with highest percentages in the roots (27–63%) and lower in rhizomes (13–50%) and leaves (14–51%). The high sulfide invasion on the west coast of Sweden was coincident with high sediment organic matter, probably increasing sulfide pressure on the plants, and high epiphytic biomass, probably constraining the oxygen dynamics in the plants and enhancing sulfide invasion. Regional and spatial variability in the δ34S were extensive, emphasizing the need for detailed analysis of local sources when applying stable sulfur isotopes in food web analyses. The observed invasion of sulfides suggests sulfide as a contributing factor to reported declines of Z. marina in the Skagerrak region.  相似文献   

19.
Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360   总被引:1,自引:0,他引:1  
Galactomyces geotrichum MTCC 1360 can decolorize triphenylmethane, azo and reactive high exhaust textile dyes. At shaking condition this strain showed 100% decolorization of a toxic azo dye Methyl red (100 m gl−1) within 1 h in deionized water at 30 °C. The degradation of Methyl red was possible through a broad pH (3–12) and temperature (5–50 °C) range. Glucose and mycelium concentration had increased the decolorization rate, but the addition of 1 gl−1 molasses in deionized water made decolorization possible in only 10 min. Induction in the NADH–dichloro phenol indophenol (NADH–DCIP) reductase, Malachite green reductase, laccase and lignin peroxidase (Lip) activities were observed in the cells obtained after complete decolorization, showing that there is direct involvement in the degradation of Methyl red. The absence of N-N′-dimethyl-p-phenylenediamine (DMPD) in 5 °C, 2-aminobenzoic acid (ABA) in 50 °C and both the compounds in 30 °C sample have shown the differences in the metabolic fate of Methyl red at different temperatures. The untreated dye at 300 mg l−1 concentration showed 88% germination inhibition in Sorghum bicolor, whereas it was 72% in Triticum aestivum. There was no germination inhibition for both the plants by Methyl red metabolites at 300 mg l−1 concentration.

The scientific relevance of the paper

The azo dye Methyl red (100 mg l−1) was decolorized by G. geotrichum MTCC 1360 within 1 h at shaking condition in deionized water. This organism could decolorize Methyl red at wide pH and temperature ranges. Decolorization time was reduced to 10 min by the addition of molasses to deionized water. There was induction in laccase and Lip, NADH–DCIP reductase and Malachite green reductase activities. The metabolic fate of Methyl red changes with temperature which can be evidenced by the formation of 2-ABA at 5 °C, N-N′-DMPD at 50 °C and both the compounds were absent at 30 °C. Phytotoxicity showed that metabolites of dye had induced shoot and root length of both the tested plants.  相似文献   

20.
The invasive, euryhaline hydroid Cordylophora sp. is a colonial cnidarian present in both freshwater and brackish water habitats. Individuals contend with osmotic stress at the tissue and cellular level. It has been suggested that this hydroid's ability to expand its range of distribution by invading new habitats is due in large part to an ability to acclimate to new salinities. The purpose of this study was to assess colony growth and morphological changes at various salinities in freshwater and brackish genotypes of Cordylophora sp. Single genotypes from a known freshwater clade (0.5 psu; Des Plaines River) and a known brackish clade (16 psu; Napa River) were cultured and gradually transitioned to 12 different salinities ranging 0.5–22 psu, and we characterized the growth rates and hydranth morphological features at each salinity. Colony growth was optimal at 0.5 psu for the freshwater genotype and 10 psu for the brackish genotype. Changes in hydranth morphology in the freshwater genotype were primarily observed at higher salinities, while morphological changes in the brackish genotype primarily occurred at lower salinities. Our results for the brackish genotype generally concur with previous work, but this study is the first to document the response of a freshwater genotype of Cordylophora sp. to various salinities. Differences in growth between these two genotypes strongly support the previously proposed existence of multiple cryptic species. Furthermore, because this hydroid is quite prevalent in freshwater and brackish systems as a fouling organism, understanding the effects of various salinities on the successful establishment of Cordylophora sp. is an important contribution to the understanding of the ecophysiology and management of this invasive hydroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号