首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin binding EGF-like growth factor (HB-EGF), encoded by the Hegfl gene, is considered as an important mediator of embryo-uterine interactions during implantation in mice. However, it is unknown whether HB-EGF is important for implantation in species with different steroid hormonal requirements. In mice and rats, maternal ovarian estrogen and progesterone (P(4)) are essential to implantation. In contrast, blastocyst implantation can occur in hamsters in the presence of P(4) alone. To ascertain whether HB-EGF plays any role in implantation in hamsters, we examined the expression, regulation and signaling of HB-EGF in the hamster embryo and uterus during the periimplantation period. We demonstrate that both the blastocyst and uterus express HB-EGF during implantation. Hegfl is expressed solely in the uterine luminal epithelium surrounding the blastocyst prior to and during the initiation of implantation. Hypophysectomized P(4)-treated pregnant hamsters also showed a similar pattern of implantation-specific Hegfl expression. These results suggest that uterine Hegfl expression at the implantation site is driven by either signals emanating from the blastocyst or maternal P(4), but not by maternal estrogen. However, in ovariectomized hamsters, uterine induction of Hegfl requires the presence of estrogen and activation of its nuclear receptor (ER), but not P(4). This observation suggests an intriguing possibility that an estrogenic or unidentified signal from the blastocyst is the trigger for uterine HB-EGF expression. An auto-induction of Hegfl in the uterus by blastocyst-derived HB-EGF is also a possibility. We further observed that HB-EGF induces autophosphorylation of ErbB1 and ErbB4 in the uterus and blastocyst. Taken together, we propose that HB-EGF production and signaling by the blastocyst and uterus orchestrate the 'two-way' molecular signaling to initiate the process of implantation in hamsters.  相似文献   

2.
Signaling via estrogen receptor (ER) occurs by interacting with many proteins. Nuclear interactome analysis of ERα in an embryo implantation model revealed the association of chicken tumor virus no. 10 regulator of kinase like (CrkL) with ERα, which was further validated by mammalian two-hybrid assay as well as coimmunoprecipitation and colocalization. Mutation in LPALL motif of CrkL disrupts the ERα-CrkL interaction and its transactivation potential, thereby suggesting that the interaction is mediated via its single ER binding motif, Leu-Pro-Ala-Leu-Leu (LXXLL) motif in the sarcoma homology (SH)2 domain. CrkL deletion constructs of SH2 domain target to the nucleus due to presence of nuclear localization signal. Interestingly, the SH2-SH3 (N terminal) construct shows an increased transactivation potential like CrkI. Weak interaction capability of mutated ERα-Y538F with CrkL validates that CrkL interacts with ERα via its YDLL motif at Tyr 541. In an attempt to understand the physiological relevance of this association, we investigated the impact on cell proliferation using a cancer model, because events associated in the process of pregnancy and cancer are analogous. Also, overexpression of CrkL is frequently associated with tumorigenesis. However, its significance in hormone-regulated cancers still remains obscure. Here, we demonstrate that association of ERα and CrkL directly enhances the tumorigenic potential of CrkL, thus pointing to its role in cell proliferation. In human endometrial cancers, we observed a strong association between ERα and CrkL levels. Thus, the molecular signaling set off by ERα and CrkL association may have a central role in pregnancy and cancer, two events which share parallels in growth, invasion, and immune tolerance.  相似文献   

3.
Beta-catenin, the mammalian homolog of Drosophila armadillo protein, was first identified as a cadherin-associated protein at cell-cell junctions. Another function of beta-catenin is the transduction of cytosolic signals to the nucleus in a variety of cellular contexts, which usually are elicited by the active form of beta-catenin. The aim of the present study was to examine the potential role of active beta-catenin in the mouse embryo and uterus during embryo implantation. Active beta-catenin was detected differentially in mouse embryos and uteri during the peri-implantation period. Aberrant activation of beta-catenin by LiCl, a well-known glycogen synthase kinase-3 inhibitor, significantly inhibited blastocyst hatching and subsequent adhesion and outgrowth on fibronectin. Results obtained from pseudopregnant and implantation-delayed mice imply an important role for implanting blastocysts in the temporal and spatial changes of active beta-catenin in the uterus during the window of implantation. Collectively, these results suggest that the beta-catenin signaling pathway is inhibited in both blastocyst and uterus during the window of implantation, which may represent a new mechanism to synchronize the development of preimplantation embryos and differentiation of the uterus during this process.  相似文献   

4.
Early embryonic development and implantation were studied in tropical short-nosed fruit bat Cyanopterus sphinx. We report preimplantation development and embryo implantation. Different stages of cleavage were observed in embryo by direct microscopic examination of fresh embryos after retrieving them either from the oviduct or the uterus at different days, up to the day of implantation. Generally, the embryos enter the uterus at the 8-cell stage. Embryonic development continued without any delay and blastocyst were formed showing attachment to the uterine epithelium at the mesometrial side of the uterus. A distinct blue band was formed in the uterus. The site of blastocyst attachment was visualized as a blue band following intravenous injection of pontamine blue. Implantation occurred 9+/-0.7 days after mating. This study reports that bat embryonic development can be studied like other laboratory animals and that this bat shows blue dye reaction, indicating the site and exact time of implantation. This blue dye reaction can be used to accurately find post-implantational delay. We prove conclusively that this species of tropical bat does not have any type of embryonic diapause.  相似文献   

5.
6.
PGE2 is essential for mammalian female reproduction. This study was to examine the expression of EP2 gene in the rat uterus during early pregnancy, delayed implantation and artificial decidualization by in situ hybridization and immunohistochemistry. There was no detectable EP2 mRNA expression in the uterus from days 1 to 4 of pregnancy (day 1 = day of vaginal sperm). A low level of EP2 immunostaining was observed in the luminal and glandular epithelium from days 1 to 4 of pregnancy. Both EP2 mRNA and protein expression were highly detected in the luminal epithelium at implantation sites on day 6 of pregnancy. EP2 expression decreased from day 7 of pregnancy and was undetectable on days 8 and 9 of pregnancy. After delayed implantation was terminated by estrogen treatment and the embryo implanted, both EP2 mRNA and protein expression were strongly observed in the luminal epithelium at the implantation site. There was no detectable EP2 expression in both control and decidualized uteri. In conclusion, these data suggest that EP2 expression at implantation site may play an important role during embryo implantation in rats.  相似文献   

7.
8.
9.
10.
Embryo transfer (ET) is the final manual intervention during which the newly formed embryo is placed within the uterus by a transcervical catheter. The loading of the syringe-catheter complex with the transferred volume consists of the transfer media (which contains the embryos) separated by air spaces on both sides. The dynamics involved in injecting the syringe-catheter complex is not well understood nor has it been investigated to date. We developed an in vitro experimental setup for simulations of ET into a rigid transparent uterine model. The catheter was loaded in sequences of liquid and air as it is in the clinical setting. The transferred liquid was colored with a dye and its dispersion within the uterine cavity was recorded by a video camera. The results demonstrated, for the first time, the importance of having a gas phase in the catheter load. The resulting air bubbles within the uterus were carried upward towards the fundus by buoyant forces, thereby dragging behind them the transferred liquid which contained the embryos. This could be expected to substantially increase the probability for the embryos to be present near the fundal wall at the time window for implantation. There was also evidence of a dependency of the rate of injection upon the catheter load into the uterus: a low speed generated several air bubbles which led to more of the transferred liquid being carried towards the fundal end, thus possibly enhancing the potential for implantation.  相似文献   

11.
Physiological and molecular determinants of embryo implantation   总被引:1,自引:0,他引:1  
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo–uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.  相似文献   

12.
The aim of this study was to investigate the presence of iNOS in the murine uterus and embryo at implantation. Western blot analysis showed the presence of a 130-kDa band with strong reactivity to anti-iNOS antibody in the pre- and peri-implantation stage uteri. This band was faint in the postimplantation uteri. Immunocytochemical studies showed a heavy localization of iNOS specifically on the apical cells of the uterine endometrium in the pre- and peri-implantation stages. But the postimplantation uteri showed resorbed endometrium showing weaker expression of iNOS. The iNOS was induced by estrogen and the induction was intensified when progesterone was given along with estrogen. This truly mimics the in vivo situation since implantation in mice occurs when an estrogen surge occurs on a background of progesterone. The embryos too express iNOS at the peri-implantation stage. We suggest that iNOS expressed at peri-implantation would lead to enhanced NO production, which could act as a vasodilator and an angiogenic mediator. These effects could promote the attachment of the blastocyst to the uterus.  相似文献   

13.
The retention time of the estrogen receptor in the nucleus of target cells after antiestrogen treatment has been shown to be longer than after estradiol. This paper describes the accumulation of nuclear estrogen receptors and the obtention of estrogenic responses (i.e. synthesis of cytosolic progesterone receptors and DNA) in the rat uterus after tamoxifen treatment in the presence or absence of estradiol. One-week ovariectomized adult rats were implanted with a silicone elastomer capsule containing corn oil or 25 micrograms estradiol/capsule (0 h). 48 h after implantation rats were injected with corn oil or 2 mg tamoxifen/kg and decapitated at 72, 96 or 120 h after implantation. In parallel experiments the implants were removed just before the injections of tamoxifen or oil. Tamoxifen injected into rats implanted with oil increased both the occupied nuclear receptors and the progesterone receptors at 96 h. In rats implanted with estradiol, tamoxifen did not increase the occupied nuclear receptors and decreased the levels of progesterone receptor and DNA at 96 h. In rats whose estradiol implants were removed at 48 h tamoxifen did not change the level of occupied nuclear receptors at 72 h but it increased them abruptly at 96 and 120 h. In these rats progesterone receptors decreased at 72 h but they increased at 96 and 120 h, and DNA decreased at 120 h to a lower level than before implantation. The results suggest that when estradiol is acting, tamoxifen is not able to increase the level of occupied estrogen receptor and it acts as an antiestrogen by decreasing the high level of progesterone receptors previously induced by estradiol. When estradiol is not acting tamoxifen behaves as a partial estrogen agonist by inducing progesterone receptors. However, the antiestrogenic action of tamoxifen on the rat uterus DNA does not seem to be affected by estradiol.  相似文献   

14.
Cytosolic and nuclear estrogen receptors in the ovary and uterus of immature rats and hamsters were determined to evaluate why exogenous estrogens were ineffective in stimulating follicular maturation in the hamster compared to the rat. Animals were injected sc with oil or single injection of 1 mg estradiol cyclopentylpropionate (ECP) on Day 23 or a daily injection of 2 mg diethylstilbestrol (DES) on Days 23-25 and killed on Day 26. Total binding sites for estrogen in ovarian cytosol of control hamsters were half the number in the rat ovary (28 fmole/mg protein) and about 50% of the receptors were occupied in the hamster. The apparent affinity of the estrogen-cytosol receptor complex was also lower in the hamster (Kd; 1.41 nM) than in the rat (Kd; 0.52 nM). After ECP treatment, there was a tendency for translocation in all 4 tissues examined even though some differences were not statistically significant. However, after DES treatment both cytosol and nuclear estrogen receptors decreased in both species. This discrepancy may be due to the difference in the time course of the nuclear translocation, the difference in metabolism and difference in the binding potencies of ECP and DES. The lack of ovarian responsiveness to estrogen in the hamster thus appears to be due to the reduced number of cytosol receptor sites which have a low affinity for estrogen and are already partially occupied.  相似文献   

15.
In rodents, the steroid hormone estrogen (E) profoundly influences the early events in the uterus leading to embryo implantation. It is thought that E triggers the expression of a unique set of genes in the endometrium that in turn control implantation. To identify these E-induced genes, we employed a delayed implantation model system in which embryo attachment to rat endometrium is dependent upon E administration. Using a gene expression screen method, we isolated a number of cDNAs representing mRNAs whose expression is either turned on or turned off in response to an implantation-inducing dose of E. We identified one of these cDNAs as that encoding secretory leukocyte protease inhibitor (SLPI), an inhibitor of serine proteases. The expression of SLPI mRNA was induced in the uteri of ovariectomized rats in response to E, confirming the hormonal regulation of this molecule. Spatiotemporal analysis revealed a biphasic pattern of expression of SLPI mRNA during early pregnancy. A considerable amount of SLPI mRNA was detected in the uterine epithelium on Day 1 of pregnancy. The level of this mRNA, however, declined sharply on Days 2 and 3 of gestation. Interestingly, on Day 4 of gestation, there was a marked resurgence in SLPI mRNA expression in the uterine epithelium. This second burst of SLPI expression diminished by Day 6 of pregnancy. The transient induction of SLPI mRNA during Days 4 and 5 overlapped with the window of implantation in the rat. Although the precise function of SLPI in the uterus eludes us presently, its known effects as a serine protease inhibitor in other tissues and its hormone-induced expression in the rat uterus immediately preceding implantation lead us to propose that this gene plays an important role in controlling excessive proteolysis and inflammation during a critical phase of early pregnancy.  相似文献   

16.
Various mediators, including cytokines, growth factors, homeotic gene products, and prostaglandins (PGs), participate in the implantation process in an autocrine, paracrine, or juxtacrine manner. However, interactions among these factors that result in successful implantation are not clearly understood. Leukemia inhibitory factor (LIF), a pleiotropic cytokine, was shown to be expressed in uterine glands on day 4 morning before implantation and is critical to this process in mice. However, the mechanism by which LIF executes its effects in implantation remains unknown. Moreover, interactions of LIF with other implantation-specific molecules have not yet been defined. Using normal and delayed implantation models, we herein show that LIF is not only expressed in progesterone (P4)-primed uterine glands before implantation in response to nidatory estrogen, it is also induced in stromal cells surrounding the active blastocyst at the time of the attachment reaction. This suggests that LIF has biphasic effects: first in the preparation of the receptive uterus and subsequently in the attachment reaction. The mechanism by which LIF participates in these events was addressed using LIF-deficient mice. We observed that while uterine cell-specific proliferation, steroid hormone responsiveness, and expression patterns of several genes are normal, specific members of the EGF family of growth factors, such as amphiregulin (Ar), heparin-binding EGF-like growth factor (HB-EGF), and epiregulin, are not expressed in LIF(-/-) uteri before and during the anticipated time of implantation, although EGF receptor family members (erbBs) are expressed correctly. Furthermore, cyclooxygenase-2 (COX-2), an inducible rate-limiting enzyme for PG synthesis and essential for implantation, is aberrantly expressed in the uterus surrounding the blastocyst in LIF(-/-) mice. These results suggest that dysregulation of specific EGF-like growth factors and COX-2 in the uterus contributes, at least partially, to implantation failure in LIF(-/-) mice. Since estrogen is essential for uterine receptivity, LIF induction, and blastocyst activation, it is possible that the nidatory estrogen effects in the P4-primed uterus for implantation are mediated via LIF signaling. However, we observed that LIF can only partially resume implantation in P4-primed, delayed implanting mice in the absence of estrogen, suggesting LIF induction is one of many functions that are executed by estrogen for implantation.  相似文献   

17.
18.
Cai L  Zhang J  Duan E 《Cytokine》2003,23(6):193-178
Embryo implantation depends on the synchronized development of the blastocyst and the endometrium. This process is highly controlled by the coordinated action of the steroid hormones: estrogen and progesterone. By autocrine, paracrine or juxtacrine routes, some growth factors or cytokines are involved in this steroidal regulation pathway. Here we report the effects of epidermal growth factor (EGF) on embryo implantation in the mouse, the expression and distribution patterns of EGF protein in the mouse blastocyst, ectoplacental cone (EPC) and peri-implantation uterus on days 1-8 of gestation.By RT-PCR and dot blot, we found that EGF and its receptor (EGFR) are co-expressed in the blastocyst and peri-implantational uteri of pregnant days 2-8 (D2-D8) mice. Injection of EGF antibody into a uterine horn on the third day of pregnancy (D3) significantly reduced the number of mouse embryos that implanted on D8, indicating EGF have a function in the mouse embryo implantation.Further investigation by using indirect immunofluorescence and confocal microscope was made to trace EGF and EGFR protein localization during the mouse embryo implantation. EGF and EGFR are co-localized in the blastocyst, and in the secondary trophoblastic giant cells (SGC) of the EPC. At the pre-implantation stage, the distribution of EGF protein in the mouse uterus changes from epithelium to stroma. On D1 of pregnancy, EGF is mainly distributed in uterine stroma and myometrium. On D2, it is present in the uterine epithelium. On D3, it changes again from the uterine epithelium to the stroma. By D4, EGF is predominantly in the stroma. This dynamic distribution correlates with the proliferation activity of uterine cells at each period. On D6-D8 of embryo implantation, EGF 3 protein accumulates at the uterine mesometrial pole, a region that contributes to the trophoblastic invasiveness and placentation.This temporal and spatial localization of EGF protein in the mouse uterus implicates the cytokine in the regulation of trophoblastic invasiveness and uterine receptiveness.  相似文献   

19.
20.
Hormonal control of implantation in guinea pigs   总被引:1,自引:0,他引:1  
In the guinea pig, for which implantation is supposedly progesterone-dependent, actual hormonal requirements were assessed by measuring the levels of circulating estradiol and progesterone and correlating them with their content in the ovaries and uterus, and uterine concentrations of their receptors prior to, during, and immediately after implantation. Ovarian and uterine content and plasma levels of estradiol and progesterone, as well as uterine cytosolic receptors of these two hormones, were high at proestrus. Up to day 3 of pregnancy, estradiol remained high in peripheral plasma, ovarian and uterine tissues, but reached low levels at the time of implantation. The levels of progesterone showed a gradual increase in plasma and ovaries till the time of implantation, with the embryonic site of the uterus accumulating more of progesterone compared to estradiol. As pregnancy progressed, a gradual translocation of cytosolic to nuclear receptors occurred, both with estradiol and progesterone receptors. Comparing the receptor values for estradiol at each uterine site showed no significant alterations between embryonic and interembryonic cytosolic receptors. While significantly high levels of nuclear estradiol receptor were found at the inter-embryonic site on day 9 of pregnancy, the cytosolic and nuclear progesterone receptor concentrations were greater at the embryonic site on the same day. These findings demonstrated that the uterus is adequately exposed to estradiol and progesterone prior to ovulation and again in early pregnancy (day 1-3), thus facilitating implantation in the guinea pig (on days 7-8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号