首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bassiatin [(3R,6R)-bassiatin] was isolated from the endogenous fungus Fusarium oxysporum J8-1-2. We found that oestrogen-dependent cell growth was inhibited by bassiatin in MCF-7 ERα (oestrogen receptor α)-positive breast cancer cells. In addition, the mRNA and protein levels of ERα and the oestrogen-responsive gene cyclin D1 were down-regulated by bassiatin in the presence of 17β-oestradiol. Co-treatment of 17β-oestradiol and bassiatin increased phospho-cyclin D1 (Thr286), an indicator of cyclin D1 phosphorylation-dependent degradation. However, this effect was not obvious in the absence of 17β-oestradiol, suggesting that bassiatin may play a role in the metabolism of cyclin D1 by decreasing cyclin D1 protein expression in the presence of 17β-oestradiol. Cyclin D1, known as a key cell cycle regulator, regulates the transition of G1- and S-phase. Decreased cyclin D1 was found to be involved in bassiatin-induced MCF-7 cell cycle arrest. Collectively, our study showed that bassiatin induced cell cycle arrest and exerted an antioestrogen effect. It may prove to be a potential drug target for antioestrogen therapy in ERα-positive breast cancer.  相似文献   

2.
Zhang H  Mak S  Cui W  Li W  Han R  Hu S  Ye M  Pi R  Han Y 《Neurochemistry international》2011,59(7):981-988
Oxidative stress is closely related to the pathogenesis of neurodegenerative disorders such as Parkinson’s disease (PD). In this study, we investigated the neuroprotective effect of tacrine–ferulic acid dimers linked by an alkylenediamine side chain (TnFA, n = 2−7), a series of novel acetylcholinesterase inhibitors, against 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells. Among these dimers, pre-treatment of tacrine(2)–ferulic acid (T2FA, 3−30 μM) attenuated 6-OHDA-induced apoptosis in a concentration-dependent manner. The activations of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) were observed after the treatment of 6-OHDA. Both SB415286 (an inhibitor of GSK3β) and PD98059 (an inhibitor of ERK kinase) reduced the neurotoxicity induced by 6-OHDA, indicating that GSK3β and ERK are involved in 6-OHDA-induced apoptosis. T2FA was able to inhibit the activation of GSK3β, but not ERK, in an Akt-dependent manner. Furthermore, LY294002, a phosphoinositide 3-kinase inhibitor, abolished the neuroprotective effect of T2FA. Collectively, these results suggest that T2FA prevents 6-OHDA-induced apoptosis possibly by activating the Akt pathway in PC12 cells.  相似文献   

3.
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degradation, in which elevated chondrocyte apoptosis and catabolic activity play an important role. MicroRNA‐155 (miR‐155) has recently been shown to regulate apoptosis and catabolic activity in some pathological circumstances, yet, whether and how miR‐155 is associated with OA pathology remain unexplored. We report here that miR‐155 level is significantly up‐regulated in human OA cartilage biopsies and also in primary chondrocytes stimulated by interleukin‐1β (IL‐1β), a pivotal pro‐catabolic factor promoting cartilage degradation. Moreover, miR‐155 inhibition attenuates and its overexpression promotes IL‐1β‐induced apoptosis and catabolic activity in chondrocytes in vitro. We also demonstrate that the PIK3R1 (p85α regulatory subunit of phosphoinositide 3‐kinase (PI3K)) is a target of miR‐155 in chondrocytes, and more importantly, PIK3R1 restoration abrogates miR‐155 effects on chondrocyte apoptosis and catabolic activity. Mechanistically, PIK3R1 positively regulates the transduction of PI3K/Akt pathway, and a specific Akt inhibitor reverses miR‐155 effects on promoting chondrocyte apoptosis and catabolic activity, phenocopying the results obtained via PIK3R1 knockdown, hence establishing that miR‐155 promotes chondrocyte apoptosis and catabolic activity through targeting PIK3R1‐mediated PI3K/Akt pathway activation. Altogether, our study discovers novel roles and mechanisms of miR‐155 in regulating chondrocyte apoptosis and catabolic activity, providing an implication for therapeutically intervening cartilage degradation and OA progression.  相似文献   

4.
Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA‐mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis‐inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR‐A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma.  相似文献   

5.
6.
Astaxanthin (ATX), which is the most abundant flavonoid in propolis, has previously shown neuroprotective properties against cerebral ischaemia‐induced apoptosis. However, the mechanisms by which ATX mediates its therapeutic effects are unclear. At present, we explored the underlying mechanisms involved in the protective effects of ATX via the phosphoinositide 3‐kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling pathway in SH‐SY5Y cells. The PI3K/Akt inhibitor LY294002 and GSK3β inhibitor LiCl were employed in this study. Pre‐treatment with ATX for 24 hours significantly decreased the oxygen and glucose deprivation (OGD)‐induced viability loss, reduced the proportion of apoptosis and regulated OGD‐mediated reactive oxygen species (ROS) production. Furthermore, ATX suppressed OGD‐caused mitochondrial membrane potential and decomposition of caspase‐3 to cleaved caspase‐3, and heightened the B‐cell lymphoma 2 (Bcl‐2)/Bax ratio. PI3K/Akt/GSK3β/Nrf2 signalling pathway activation in SH‐SY5Y cells was verified by Western blot. ATX and LiCl treatment raised the protein levels of p‐Akt, p‐GSK3β, nucleus Nrf2 and haeme oxygenase 1 (HO‐1). However, these protein expression levels decreased by treatment of LY294002. The above in vitro data indicate that ATX can confer neuroprotection against OGD‐induced apoptosis via the PI3K/Akt/GSK3β/Nrf2 signalling pathway.  相似文献   

7.
8.
Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.  相似文献   

9.
Mechanical signals can inactivate glycogen synthase kinase 3β (GSK3β), resulting in stabilization of β-catenin. This signaling cascade is necessary for the inhibition of adipogenesis in mesenchymal stem cells (MSC) that is produced by a daily strain regimen. We investigated whether Akt is the mechanically activated kinase responsible for phosphorylation and inactivation of GSK3β in MSC. Mechanical strain (2% magnitude, 0.17 Hz) induced phosphorylation of Akt at Ser-473 and Thr-308 in parallel with phosphorylation of GSK3β at Ser-9. Inhibiting Akt (Akt1/2 kinase inhibitor treatment or Akt knockdown) prevented strain-induced phosphorylation of GSK3β at Ser-9. Inhibition of PI3K prevented Thr-308 phosphorylation, but strain-induced Ser-473 phosphorylation was measurable and induced phosphorylation of GSK3β, suggesting that Ser-473 phosphorylation is sufficient for the downstream mechanoresponse. As Rictor/mTORC2 (mammalian target of rapamycin complex 2) is known to transduce phosphorylation of Akt at Ser-473 by insulin, we investigated whether it contributes to strain-induced Ser-473 phosphorylation. Phosphorylation of Ser-473 by both mechanical and insulin treatment in MSC was prevented by the mTOR inhibitor KU0063794. When mTORC2 was blocked, mechanical GSK3β inactivation was prevented, whereas insulin inhibition of GSK3β was still measured in the absence of Ser-473 phosphorylation, presumably through phosphorylation of Akt at Thr-308. In sum, mechanical input initiates a signaling cascade that is uniquely dependent on mTORC2 activation and phosphorylation of Akt at Ser-473, an effect sufficient to cause inactivation of GSK3β. Thus, mechanical regulation of GSK3β downstream of Akt is dependent on phosphorylation of Akt at Ser-473 in a manner distinct from that of growth factors. As such, Akt reveals itself to be a pleiotropic signaling molecule whose downstream targets are differentially regulated depending upon the nature of the activating input.  相似文献   

10.
Interleukin-33 (IL-33) receptors are composed of ST2 (also known as IL-1R4), a ligand binding chain, and IL-1 receptor accessory protein (IL-1RAcP, also known as IL-1R3), a signal transducing chain. IL-1R3 is a common receptor for IL-1α, and IL-1β, IL-33, and three IL-36 isoforms. A549 human lung epithelial cells are highly sensitive to IL-1α and IL-1β but not respond to IL-33. The lack of responsiveness to IL-33 is due to ST2 expression. ST2 was stably transfected into A549 cells to reconstitute its activity. RT-PCR and FACS analysis confirmed ST2 expression on the cell surface of A549/ST2 cells. Upon IL-33 stimulation, A549/ST2 cells induced IL-8 and IL-6 production in a dose dependent manner while A549/mock cells remained unresponsive. There was no difference in IL-1α and IL-1β activity in A549/ST2 cells compared to A549/mock cells despite the fact that IL-33 shares IL-1R3 with IL-1α/β. IL-33 activated inflammatory signaling molecules in a time- and dose-dependent manner. Anti-ST2 antibody and soluble recombinant ST2-Fc abolished IL-33-induced IL-6 and IL-8 production in A549/ST2 cells but the IL-1 receptor antagonist failed to block IL-33-induced cytokines. This result demonstrates for the first time the reconstitution of ST2 in A549 human lung epithelial cell line and verified its function in IL-33-mediated cytokine production and signal transduction.  相似文献   

11.
Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H2O2)-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H2O2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H2O2. In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H2O2-induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H2O2-induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H2O2-induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.  相似文献   

12.
High fluence low‐power laser irradiation (HF‐LPLI) is a newly discovered stimulus through generating reactive oxygen species (ROS) to trigger cell apoptosis. Activation of glycogen synthase kinase 3β (GSK3β) is proved to be involved in intrinsic apoptotic pathways under various stimuli. However, whether the proapoptotic factor GSK3β participates in HF‐LPLI‐induced apoptosis has not been elucidated. Therefore, in the present study, we investigated the involvement of GSK3β in apoptosis under HF‐LPLI treatment (120 J/cm2, 633 nm). We found that GSK3β activation could promote HF‐LPLI‐induced apoptosis, which could be prevented by lithium chloride (a selective inhibitor of GSK3β) exposure or by GSK3β‐KD (a dominant‐negative GSK3β) overexpression. We also found that the activation of GSK3β by HF‐LPLI was due to the inactivation of protein kinase B (Akt), a widely reported and important upstream negative regulator of GSK3β, indicating the existence and inactivation of Akt/GSK3β signaling pathway. Moreover, the inactivation of Akt/GSK3β pathway depended on the fluence of HF‐LPLI treatment. Furthermore, vitamin c, a ROS scavenger, completely prevented the inactivation of Akt/GSK3β pathway, indicating ROS generation was crucial for the inactivation. In addition, GSK3β promoted Bax activation by down‐regulating Mcl‐1 upon HF‐LPLI treatment. Taken together, we have identified a new and important proapoptotic signaling pathway that is consisted of Akt/GSK3β inactivation for HF‐LPLI stimulation. Our research will extend the knowledge into the biological mechanisms induced by LPLI. J. Cell. Physiol. 226: 588–601, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Subtilase cytotoxin (SubAB) is the prototype of a distinct AB5 toxin family produced by Shiga toxigenic Escherichia coli. Recent reports disclosed pro-apoptotic pathways triggered by SubAB, whereas its anti-apoptotic signals have not been elucidated. In the present study, we investigated pro-survival signaling elicited by SubAB, especially focusing on extracellular signal-regulated kinase (ERK) and Akt. We found that SubAB activated ERK and Akt, and inhibition of individual kinases enhanced SubAB-triggered apoptosis. SubAB induced endoplasmic reticulum (ER) stress, and other ER stress inducers mimicked the stimulatory effects of SubAB on ERK and Akt. Attenuation of ER stress reduced SubAB-induced phosphorylation of these kinases, suggesting involvement of the unfolded protein response (UPR). SubAB induced activation of protein kinase-like ER kinase (PERK) and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and phosphorylation of eIF2α by salubrinal caused activation of ERK and Akt, leading to cell survival. Dominant-negative inhibition of PERK enhanced SubAB-induced apoptosis and reduced phosphorylation of ERK and Akt. Furthermore, the anti-apoptotic effect of eIF2α was significantly reversed by inhibition of ERK and Akt. These results suggest cytoprotective roles of ERK and Akt in SubAB-triggered, ER stress-mediated apoptosis.  相似文献   

14.
We recently demonstrated that the tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) helps maintenance of cell survival by regulating glycogen synthase kinase 3β (GSK3β) activity during TNF signaling. However, the molecular linkage between TRAF6 and GSK3β signaling is unknown. Herein, we showed that TRAF6 positively regulated cell survival by modulating PI3K-Akt-GSK3β cascades. In 3T3 cells lacking TRAF6, but not those lacking TRAF2, TNF stimulation led to prolonged hyperphosphorylation of Akt, which coincided with the activation of upstream PI3K. Pharmacologically blocking PI3K significantly inhibited Akt and GSK3β phosphorylation. Importantly, PI3K inhibition rescued cell death in TRAF6-null 3T3 cells. These data suggested TRAF6 regulates TNF-mediated cell survival through PI3K-Akt-GSK3β cascades.  相似文献   

15.
D2/D3 dopamine receptors (D2R/D3R) agonists regulate Akt, but their effects display a complex time‐course. In addition, the respective roles of D2R and D3R are not defined and downstream targets remain poorly characterized, especially in vivo. These issues were addressed here for D3R. Systemic administration of quinelorane, a D2R/D3R agonist, transiently increased phosphorylation of Akt and GSK‐3β in rat nucleus accumbens and dorsal striatum with maximal effects 10 min after injection. Akt activation was associated with phosphorylation of several effectors of the mammalian target of rapamycin complex 1 (mTORC1): p70S6 kinase, ribosomal protein‐S6 (Ser240/244), and eukaryotic initiation factor‐4E binding protein‐1. The action of quinelorane was antagonized by a D2/D3R antagonist, raclopride, and the selective D3R antagonist S33084, inactive by themselves. Furthermore, no effect of quinerolane was seen in knock‐out mice lacking D3R. In drd1a‐EGFP transgenic mice, quinelorane activated Akt/GSK‐3β in both neurons expressing and lacking D1 receptor. Thus, the stimulation of D3R transiently activates the Akt/GSK‐3β pathway in the two populations of medium‐size spiny neurons of the nucleus accumbens and dorsal striatum. This effect may contribute to the influence of D3R ligands on reward, cognition, and processes disrupted in schizophrenia, drug abuse, and Parkinson's disease.  相似文献   

16.
In this study, we demonstrate that interleukin-4 (IL-4) protects human hepatocellular carcinoma (HCC) cell line Hep3B from apoptosis induced by transforming growth factor-β (TGF-β). Further investigation of IL-4-transduced signaling pathways revealed that both insulin response substrate 1 and 2 (IRS-1/-2) and extracellular signal-regulated kinase (ERK) pathways were activated after IL-4 stimulation. The IRS-1/-2 activation was accompanied by the activation of phosphotidylinositol-3-kinase (PI3K), leading to Akt and p70 ribosomal protein S6 kinase (p70S6K). Interestingly, a protein kinase C (PKC) inhibitor, Gö6976, inhibited the phosphorylation of Akt, suggesting that the Akt activation was PKC-dependent. Using specific inhibitors for PI3K or ERK, we demonstrated that the PI3K pathway, but not the ERK pathway, was required for protection. The constitutively active form of PI3K almost completely rescued TGF-β-induced apoptosis, further supporting the importance of the PI3K pathway in the protective effect of IL-4. Furthermore, a dominant negative Akt and/or Gö6976 only partially blocked the anti-apoptotic effect of IL-4. Similarly, rapamycin, which interrupted the activation of p70S6K, also only partially blocked the protective effect of IL-4. However, in the presence of both rapamycin and dominant negative Akt with or without Gö6976, IL-4 almost completely lost the anti-apoptotic effect, suggesting that both Akt and p70S6K pathways were required for the protective effect of IL-4 against TGF-β-induced apoptosis.  相似文献   

17.
Bipolar disorder (BD) is characterized by disruptions in circadian rhythms such as sleep and daily activity that often normalize after lithium treatment in responsive patients. As lithium is known to interact with the circadian clock, we hypothesized that variation in circadian 'clock genes' would be associated with lithium response in BD. We determined genotype for 16 variants in seven circadian clock genes and conducted a candidate gene association study of these in 282 Caucasian patients with BD who were previously treated with lithium. We found that a variant in the promoter of NR1D1 encoding Rev-Erbα (rs2071427) and a second variant in CRY1 (rs8192440) were nominally associated with good treatment response. Previous studies have shown that lithium regulates Rev-Erbα protein stability by inhibiting glycogen synthase kinase 3β (GSK3β). We found that GSK3β genotype was also suggestive of a lithium response association, but not statistically significant. However, when GSK3β and NR1D1 genotypes were considered together, they predicted lithium response robustly and additively in proportion to the number of response-associated alleles. Using lymphoblastoid cell lines from patients with BD, we found that both the NR1D1 and GSK3β variants are associated with functional differences in gene expression. Our findings support a role for Rev-Erbα in the therapeutic mechanism of lithium and suggest that the interaction between Rev-Erbα and GSK3β may warrant further study.  相似文献   

18.
Sepsis‐induced cardiac dysfunction represents a main cause of death in intensive care units. Previous studies have indicated that GSK‐3β is involved in the modulation of sepsis. However, the signalling details of GSK‐3β regulation in endotoxin lipopolysaccharide (LPS)‐induced septic myocardial dysfunction are still unclear. Here, based on the rat septic myocardial injury model, we found that LPS could induce GSK‐3β phosphorylation at its active site (Y216) and up‐regulate FOXO3A level in primary cardiomyocytes. The FOXO3A expression was significantly reduced by GSK‐3β inhibitors and further reversed through β‐catenin knock‐down. This pharmacological inhibition of GSK‐3β attenuated the LPS‐induced cell injury via mediating β‐catenin signalling, which could be abolished by FOXO3A activation. In vivo, GSK‐3β suppression consistently improved cardiac function and relieved heart injury induced by LPS. In addition, the increase in inflammatory cytokines in LPS‐induced model was also blocked by inhibition of GSK‐3β, which curbed both ERK and NF‐κB pathways, and suppressed cardiomyocyte apoptosis via activating the AMP‐activated protein kinase (AMPK). Our results demonstrate that GSK‐3β inhibition attenuates myocardial injury induced by endotoxin that mediates the activation of FOXO3A, which suggests a potential target for the therapy of septic cardiac dysfunction.  相似文献   

19.
This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (3,6-bis(3-chlorophenylacetyl)phloroglucinol; MCPP) in human colon cancer cells. MCPP induced cell death and antiproliferation in three human colon cancer, HCT-116, SW480, and Caco-2 cells, but not in primary human dermal fibroblast cells. MCPP-induced concentration-dependent apoptotic cell death in colon cancer cells was measured by fluorescence-activated cell sorter (FACS) analysis. Treatment of HCT-116 human colon cancer cells with MCPP was found to induce a number of signature endoplasmic reticulum (ER) stress markers; and up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose-regulated protein (GRP)-78, phosphorylation of eukaryotic initiation factor-2α (eIF-2α), suggesting the induction of ER stress. MCPP also increased GSK3α/β(Tyr270/216) phosphorylation and reduced GSK3α/β(Ser21/9) phosphorylation time-dependently. Transfection of cells with GRP78 or CHOP siRNA, or treatment of GSK3 inhibitor SB216163 reduced MCPP-mediated cell apoptosis. Treatment of MCPP also increased caspase-7, caspase-9, and caspase-3 activity. The inhibition of caspase activity by z-DEVE-FMK or z-VAD-FMK significantly reduced MCPP-induced apoptosis. Furthermore, treatment of GSK3 inhibitor SB216763 also dramatically reversed MCPP-induced GRP and CHOP up-regulation, and pro-caspase-3 and pro-caspase-9 degradation. Taken together, the present study provides evidences to support that GRP78 and CHOP expression, and GSK3α/β activation in mediating the MCPP-induced human colon cancer cell apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号