共查询到20条相似文献,搜索用时 15 毫秒
1.
Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes 总被引:10,自引:0,他引:10
BACKGROUND AND AIMS: The stomata are a key channel of the water cycle in ecosystems, and are constrained by both physiological and environmental elements. The aim of this study was to parameterize stomatal conductance by extending a previous empirical model and a revised Ball-Berry model. METHODS: Light and CO(2) responses of stomatal conductance and photosynthesis of winter wheat in the North China Plain were investigated under ambient and free-air CO(2) enrichment conditions. The photosynthetic photon flux density and CO(2) concentration ranged from 0 to 2000 micro mol m(-2) s(-1) and from 0 to 1400 micro mol mol(-1), respectively. The model was validated with data from a light, temperature and CO(2) response experiment. RESULTS: By using previously published hyperbolic equations of photosynthetic responses to light and CO(2), the number of parameters in the model was reduced. These response curves were observed diurnally with large variations of temperature and vapour pressure deficit. The model interpreted stomatal response under wide variations in environmental factors. CONCLUSIONS: Most of the model parameters, such as initial photon efficiency and maximum photosynthetic rate (P(max)), have physiological meanings. The model can be expanded to include influences of other physiological elements, such as leaf ageing and nutrient conditions, especially leaf nitrogen content. 相似文献
2.
Summary Previously we reported that leaf conductance of cowpea (Vigna unguiculata) decreased with small changes in soil water status without associated changes in leaf water status. In these studies a larger range of soil water deficits was imposed in a rain-free environment by prolonged soil drying, and by weekly irrigation with different amounts of water. With progressive soil water deficits, leaf conductance and xylem pressure potential both declined, but in a manner which indicated that they were not related. Diurnal courses of leaf conductance usually indicated that stomatal opening occurred in the morning, and partial or complete stomatal closure occurred during midday and afternoon. This stomatal closure was associated with increases in air vapor pressure deficit. Day-to-day increases in leaf conductance, at times when radiation was not limiting stomatal opening, were associated with decreases in air vapor pressure deficits. However, maximum leaf conductances and their responses to vapor pressure deficit were generally smaller for plants subjected to greater depletion of soil water. 相似文献
3.
The role of the mesophyll in stomatal responses to light and CO2 总被引:1,自引:0,他引:1
Stomatal responses to light and CO2 were investigated using isolated epidermes of Tradescantia pallida , Vicia faba and Pisum sativum . Stomata in leaves of T. pallida and P. sativum responded to light and CO2 , but those from V. faba did not. Stomata in isolated epidermes of all three species could be opened on KCl solutions, but they showed no response to light or CO2 . However, when isolated epidermes of T. pallida and P. sativum were placed on an exposed mesophyll from a leaf of the same species or a different species, they regained responsiveness to light and CO2 . Stomatal responses in these epidermes were similar to those in leaves in that they responded rapidly and reversibly to changes in light and CO2 . Epidermes from V. faba did not respond to light or CO2 when placed on mesophyll from any of the three species. Experiments with single optic fibres suggest that stomata were being regulated via signals from the mesophyll produced in response to light and CO2 rather than being sensitized to light and CO2 by the mesophyll. The data suggest that most of the stomatal response to CO2 and light occurs in response to a signal generated by the mesophyll. 相似文献
4.
Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature 总被引:7,自引:0,他引:7
Colonization of roots and soil by arbuscular mycorrhizal (AM) fungi sometimes promotes stomatal conductance (g
s) of the host plant, but scientists have had difficulty predicting or manipulating the response. Our objective was to test
whether the magnitude of AM influence on g
s is related to environmental conditions: irradiance, air temperature or leaf temperature. Stomatal conductances of two groups
of uncolonized sorghum plants were compared to g
s of plants colonized by Glomus intraradices (Gi) or Gigaspora margarita (Gm) in 31 morning and afternoon periods under naturally varying greenhouse conditions. Stomatal conductance of Gi and Gm plants was often markedly higher than g
s of similarly sized nonAM plants. AM promotion of g
s was minimal at the lowest irradiances and lowest air and leaf temperatures, but was substantial at intermediate irradiance
and temperatures. AM promotion was again low or absent at the highest irradiances and temperatures. Magnitude of AM promotion
of g
s was not a function of absolute g
s. Promotion of g
s by Gi and Gm was remarkably similar. Differing phosphorus fertilization did not affect g
s. 相似文献
5.
《Environmental and Experimental Botany》2007,59(3):252-263
We analysed the impact of elevated CO2 on water relations, water use efficiency and photosynthetic gas exchange in barley (Hordeum vulgare L.) under wet and drying soil conditions. Soil moisture was less depleted under elevated compared to ambient [CO2]. Elevated CO2 had no significant effect on the water relations of irrigated plants, except on whole plant hydraulic conductance, which was markedly decreased at elevated compared to ambient CO2 concentrations. The values of relative water content, water potential and osmotic potential were higher under elevated CO2 during the entire drought period. The better water status of water-limited plants grown at elevated CO2 was the result of stomatal control rather than of osmotic adjustment. Despite the low stomatal conductance produced by elevated CO2, net photosynthesis was higher under elevated than ambient CO2 concentrations. With water shortage, photosynthesis was maintained for longer at higher rates under elevated CO2. The reduction of stomatal conductance and therefore transpiration, and the enhancement of carbon assimilation by elevated CO2, increased instantaneous and whole plant water use efficiency in both irrigated and droughted plants. Thus, the metabolism of barley plants grown under elevated CO2 and moderate or mild water deficit conditions is benefited by increased photosynthesis and lower transpiration. The reduction in plant water use results in a marked increase in soil water content which delays the onset and severity of water deficit. 相似文献
6.
Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms 总被引:5,自引:0,他引:5
Lin Guanghui Rygiewicz Paul T. Ehleringer James R. Johnson Mark G. Tingey David T. 《Plant and Soil》2001,229(2):259-270
We previously used dual stable isotope techniques to partition soil CO2 efflux into three source components (rhizosphere respiration, litter decomposition, and soil organic matter (SOM) oxidation) using experimental chambers planted with Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] seedlings. The components responded differently to elevated CO2 (ambient + 200 mol mol–1) and elevated temperature (ambient + 4 °C) treatments during the first year. Rhizosphere respiration increased most under elevated CO2, and SOM oxidation increased most under elevated temperature. However, many studies show that plants and soil processes can respond to altered climates in a transient way. Herein, we extend our analysis to 2 years to evaluate the stability of the responses of the source components. Total soil CO2 efflux increased significantly under elevated CO2 and elevated temperature in both years (1994 and 1995), but the enhancement was much less in 1995. Rhizosphere respiration increased less under elevated temperature in 1995 compared with 1994. Litter decomposition also tended to increase comparatively less in 1995 under elevated CO2, but was unresponsive to elevated temperature between years. In contrast, SOM oxidation was similar under elevated CO2 in the 2 years. Less SOM oxidation occurred under elevated temperature in 1995 compared with 1994. Our results indicate that temporal variations can occur in CO2 production by the sources. The variations likely involve responses to antecedent physical disruption of the soil and physiological processes. 相似文献
7.
8.
Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form
Responses in stomatal conductance (g
st
) and leaf xylem pressure potential (
leaf
) to elevated CO2 (2x ambient) were compared among 12 tallgrass prairie species that differed in growth form and growth rate. Open-top chambers (OTCs, 4.5 m diameter, 4.0 m in height) were used to expose plants to ambient and elevated CO2 concentrations from April through November in undisturbed tallgrass prairie in NE Kansas (USA). In June and August,
leaf
was usually higher in all species at elevated CO2 and was lowest in adjacent field plots (without OTCs). During June, when water availability was high, elevated CO2 resulted in decreased g
st
in 10 of the 12 species measured. Greatest decreases in g
st
(ca. 50%) occurred in growth forms with the highest potential growth rates (C3 and C4 grasses, and C3 ruderals). In contrast, no significant decrease in g
st
was measured in the two C3 shrubs. During a dry period in September, reductions in g
st
at elevated CO2 were measured in only two species (a C3 ruderal and a C4 grass) whereas increased g
st
at elevated CO2 was measured in the shrubs and a C3 forb. These increases in g
st
were attributed to enhanced
leaf
in the elevated CO2 plants resulting from increased soil water availability and/or greater root biomass. During a wet period in September, only reductions in g
st
were measured in response to elevated CO2. Thus, there was significant interspecific variability in stomatal responses to CO2 that may be related to growth form or growth rate and plant water relations. The effect of growth in the OTCs, relative to field plants, was usually positive for g
st
and was greatest (>30%) when water availability was low, but only 6–12% when
leaf
was high.The results of this study confirm the importance of considering interactions between indirect effects of high CO2 of plant water relations and direct effects of elevated CO2 on g
st
, particularly in ecosystems such as grasslands where water availability often limits productivity. A product of this interaction is that the potential exists for either positive or negative responses in g
st
to be measured at elevated levels of CO2. 相似文献
9.
A.P. Tulloch 《Chemistry and physics of lipids》1979,25(3):225-235
Deuterated oleates have been synthesized by semihydrogenation of acetylenic intermediates. [11-2H2]Oleate was prepared by two-carbon chain extension of the C16 alcohol obtained from [1-2H2]octyl bromide and 7-octyn-1-ol. [8-2H2] and [7-2H2]oleates were both prepared from dimethyl suberate, tetradeutero intermediate C16 alcohols were synthesized from [1,8-2H4] and [2,7-2H4]octane diols by monobromination, conversion to deuterated 9-decyn-1-ols and reaction with octyl bromide. Oxidation gave [8-2H2]-9-octadecynoate and [2,7-2H2]-9-octadecynoate, after semihydrogenation of the latter, deuterons at C-2 were removed by exchange with aqueous alkali. [6-2H2] and [5-2H2]oleates were obtained from methyl 5-tetradecynoate, semihydrogenation, deuterium exchange at C-2 and two malonate extensions gave [6-2H2]oleate; reduction with lithium aluminum deuteride, two malonate extensions and semihydrogenation gave the [5-2H2] ester. [4-2H2] and [3-2H2]oleates were both obtained from methyl 7-cis-hexadecenoate, exchange of the α protons and chain extension gave the [4-2H2] ester and reduction with lithium aluminum deuteride and chain extension gave the [3-2H2] ester. 相似文献
10.
Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration 总被引:3,自引:0,他引:3
下载免费PDF全文

Stomatal responses to atmospheric change have been well documented through a range of laboratory- and field-based experiments. Increases in atmospheric concentration of CO(2) ([CO(2)]) have been shown to decrease stomatal conductance (g(s)) for a wide range of species under numerous conditions. Less well understood, however, is the extent to which leaf-level responses translate to changes in ecosystem evapotranspiration (ET). Since many changes at the soil, plant, and canopy microclimate levels may feed back on ET, it is not certain that a decrease in g(s) will decrease ET in rain-fed crops. To examine the scaling of the effect of elevated [CO(2)] on g(s) at the leaf to ecosystem ET, soybean (Glycine max) was grown in field conditions under control (approximately 375 micromol CO(2) mol(-1) air) and elevated [CO(2)] (approximately 550 micromol mol(-1)) using free air CO(2) enrichment. ET was determined from the time of canopy closure to crop senescence using a residual energy balance approach over four growing seasons. Elevated [CO(2)] caused ET to decrease between 9% and 16% depending on year and despite large increases in photosynthesis and seed yield. Ecosystem ET was linked with g(s) of the upper canopy leaves when averaged across the growing seasons, such that a 10% decrease in g(s) results in a 8.6% decrease in ET; this relationship was not altered by growth at elevated [CO(2)]. The findings are consistent with model and historical analyses that suggest that, despite system feedbacks, decreased g(s) of upper canopy leaves at elevated [CO(2)] results in decreased transfer of water vapor to the atmosphere. 相似文献
11.
Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought
Louise C. Andresen Anders Michelsen Sven Jonasson Inger K. Schmidt Teis N. Mikkelsen Per Ambus Claus Beier 《Plant and Soil》2010,328(1-2):381-396
Temperate terrestrial ecosystems are currently exposed to increased atmospheric CO2 and progressive climatic changes with increased temperature and periodical drought. We here present results from a field experiment, where the effects of these three main climate change related factors are investigated solely and in all combinations at a temperate heathland. Significant responses were found in the top soils below the two dominant species (Calluna vulgaris and Deschampsia flexuosa). During winter incubation, microbial immobilization of N and ammonification rate decreased in response to warming in Deschampsia soil, and microbial immobilization of N and P decreased in warmed Calluna soil. Warming tended to increase microbial N and P in Calluna but not in Deschampsia soil in fall, and more microbial C was accumulated under drought in Calluna soil. The effects of warming were often counteracted or erased when combined with CO2 and drought. Below Deschampsia, the net nitrification rate decreased in response to drought and, while phosphorus availability and microbial P immobilization decreased, but nitrification increased in response to elevated CO2. Furthermore, leaf litter decomposition of both species decreased in response to drought. These complex changes in availability and release of nutrients from soil organic matter turnover and mineralization in response to elevated CO2 and climate change may influence the future plant carbon sequestration and species composition at temperate heathlands. 相似文献
12.
13.
Stomatal density tends to vary inversely with changes in atmospheric CO(2) concentration (C(a)). This phenomenon is of significance due to: (i) the current anthropogenic rise in C(a) and its impact on vegetation, and (ii) the potential applicability for reconstructing palaeoatmospheric C(a) by using fossil plant remains. It is generally assumed that the inverse change of stomatal density with C(a) represents an adaptation of epidermal gas conductance to varying C(a). Reconstruction of fossil C(a) by using stomatal density is usually based on empirical curves which are obtained by greenhouse experiments or the study of herbarium material. In this contribution, a model describing the stomatal density response to changes in C(a) is introduced. It is based on the diffusion of water vapour and CO(2), photosynthesis and an optimisation principle concerning gas exchange and water availability. The model considers both aspects of stomatal conductance: degree of stomatal aperture and stomatal density. It is shown that stomatal aperture and stomatal density response can be separated with stomatal aperture representing a short-term response and stomatal density a long-term response. The model also demonstrates how the stomatal density response to C(a) is modulated by environmental factors. This in turn implies that reliable reconstructions of ancient C(a) require additional information concerning temperature and humidity of the considered sites. Finally, a sensitivity analysis was carried out for the relationship between stomatal density and C(a) in order to identify critical parameters (= small parameter changes lead to significant changes of the results). Stomatal pore geometry (pore size and depth) represents a critical parameter. In palaeoclimatic studies, pore geometry should therefore also be considered. 相似文献
14.
15.
Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack 总被引:3,自引:0,他引:3
Junsheng Qi Chun-Peng Song Baoshan Wang Jianmin Zhou Jaakko Kangasj?rvi Jian-Kang Zhu Zhizhong Gong 《植物学报(英文版)》2018,(9)
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO_2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO_2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species(ROS). Under abiotic and bioticstress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network,primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO_2 signaling, and immunity responses.Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. 相似文献
16.
Acclimation of photosynthetic proteins to rising atmospheric CO2 总被引:9,自引:0,他引:9
In this review we discuss how the photosynthetic apparatus, particularly Rubisco, acclimates to rising atmospheric CO2 concentrations (ca). Elevated ca alters the control exerted by different enzymes of the Calvin cycle on the overall rate of photosynthetic CO2 assimilation, so altering the requirement for different functional proteins. A decreased flux of carbon through the photorespiratory pathway will decrease requirements for these enzymes. From modeling of the response of CO2 uptake (A) to intracellular CO2 concentration (ci) it is shown that the requirement for Rubisco is decreased at elevated ca, whilst that for proteins limiting ribulose 1,5 bisphosphate regeneration may be increased. This balance may be altered by other interactions, in particular plasticity of sinks for photoassimilate and nitrogen supply; hypotheses on these interactions are presented. It is speculated that increased accumulation of carbohydrate in leaves developed at elevated ca may signal the down regulation of Rubisco. The molecular basis of this down regulation is discussed in terms of the repression of photosynthetic gene expression by the elevated carbohydrate concentrations. This molecular model is then used to predict patterns of acclimation of perennials to long term growth in elevated ca. 相似文献
17.
Mesophyll conductance to CO2 in Arabidopsis thaliana 总被引:1,自引:0,他引:1
Flexas J Ortuño MF Ribas-Carbo M Diaz-Espejo A Flórez-Sarasa ID Medrano H 《The New phytologist》2007,175(3):501-511
The close rosette growth form, short petioles and small leaves of Arabidopsis thaliana make measurements with commercial gas exchange cuvettes difficult. This difficulty can be overcome by growing A. thaliana plants in 'ice-cream cone-like' soil pots. This design permitted simultaneous gas exchange and chlorophyll fluorescence measurements from which the first estimates of mesophyll conductance to CO(2) (g(m)) in Arabidopsis were obtained and used to determine photosynthetic limitations during plant ageing from c. 30-45 d. Estimations of g(m) showed maximum values of 0.2 mol CO(2) m(-2) s(-1) bar(-1), lower than expected for a thin-leaved annual species. The parameterization of the response of net photosynthesis (A(N)) to chloroplast CO(2) concentrations (C(c)) yielded estimations of the maximum velocity of carboxylation (V(c,max_Cc)) which were also lower than those reported for other annual species. As A. thaliana plants aged from 30 to 45 d, there was a 40% decline of A(N) that was entirely the result of increased diffusional limitations to CO(2) transfer, with g(m) being the largest. The results suggest that in A. thaliana A(N) is limited by low g(m) and low capacity for carboxylation. Decreased g(m) is the main factor involved in early age-induced photosynthetic decline. 相似文献
18.
Carbon-water balance and patchy stomatal conductance 总被引:11,自引:0,他引:11
Stomata govern carbon-water balance by simultaneously controlling photosynthesis (A) and transpiration (E). It is unclear how patchy stomatal conductance influences this control. Cowan and Farquhar showed that for a given water
supply available during a fixed time interval, carbon gain is maximized by a pattern of stomatal behavior that keeps the partial
derivative of A with respect to E constant. This result implies that spatially uniform stomatal conductance is optimal (provided photosynthetic performance
and environmental conditions are spatially uniform), so patchy stomatal conductance should be detrimental to carbon-water
balance. However, these results required that the curvature of A versus E be uniformly negative. Using mathematical arguments and computer modeling, we show that (1) this caveat is violated under
some environmental conditions, (2) water-use efficiency (A/E) is nearly unaffected, and can actually be improved, by patchiness under these conditions, and (3) patchiness has most often
been observed under conditions similar to these. These results imply that under many conditions, patchiness may not significantly
influence carbon-water balance, consistent with recent work suggesting patchiness may be common but unobserved. Additionally,
we discuss implications of these results that muddle the definition of `optimal' in the context of plant gas exchange in some
situations, and extend the work of Cowan and Farquhar under conditions causing positive curvature in A versus E.
Received: 15 May 1998 / Accepted: 14 October 1998 相似文献
19.
Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought 总被引:16,自引:1,他引:16
Duan Xiangrong; Neuman Dawn S.; Reiber Janet M.; Green Craig D.; Saxton Arnold M.; Aug Robert M. 《Journal of experimental botany》1996,47(10):1541-1550
During drying, mycorrhizal plants often maintain higher stomatalconductance (gs) than similarly-sized and -nourished non-mycorrhizalplants, but the mechanism of mycorrhizal influence remains unclear.Several hydraulic and non-hydraulic factors previously implicatedin control of stomatal behavior during drought were measured,to learn which are affected when roots of cowpea (Vigna unguiculata[L.] Walp. cv. White Acre) are extensively colonized by Glomusintraradices Schenck and Smith isolate UT143. At low soil watercontents (), mycorrhizal plants maintained higher gs, transpirationand shoot water potential () than non-mycorrhizal plants. Thesehigher foliar water status characters were associated with lowerxylemsap abscisic acid concentrations ([ABA]) and lower ABAfluxes to leaves in mycorrhizal plants at low soil . Stomatalconductance was most closely correlated with xylem-sap [ABA],ABA flux to leaves and shoot . Stomatal conductance was notcorrelated with xylemsap concentrations of calcium or zeatinriboside equivalents, or with xylem-sap pH, nor were these xylem-sapconstituents affected by mycorrhizal symbiosis. Stomata of mycorrhizaland non-mycorhizal leaves showed similar sensitivities to ABA,whether leaves were intact or detached. It is concluded thatmycorrhizal fungi probably increased the capability of rootsystems to scavenge water in drier soil, resulting in less strainto foliage and hence higher gs, and shoot at particular soil. Key words: Abscisic acid, cytokinins, Glomus intraradices 相似文献
20.
Rapid stomatal responses to humidity 总被引:2,自引:0,他引:2
The response of leaf conductance in apple to rapid changes in atmospheric humidity was studied using a continuous flow porometer. Leaf-air vapour pressure difference was changed by adjusting the humidity of the inlet air or by altering the flow rate of the air through the chamber. The time course of the response of leaf conductance to leaf-air vapour pressure difference was monitored for periods up to 10 min using a chart-recorder. There were significant changes in leaf conductance within seconds of changing humidity. These were attributed to alterations in stomatal aperture.Abbreviations E
evaporation rate
- g
leaf conductance
- PAR
photosynthetically active radiation 相似文献