首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>PTEN is a powerful tumor suppressor gene frequently mutated in human cancers and autism spectrum disorders.PTEN protein is located both in the cytoplasm and nucleus and can also be secreted from cells. The best characterized function of PTEN is its ability to dephosphorylate Ptd Ins(3,4,5)P3 and converts it back into PIP2 in the cytoplasm,therefore antagonizing the PI3K/AKT pathway which is mainly involved in regulation of cell growth, differentiation,  相似文献   

2.
3.
Signaling through phosphatidylinositol-3 kinases (PI3K) regulates fundamental cellular processes such as survival and growth, and these lipid kinases are currently being investigated as therapeutic targets in several contexts. In skeletal tissue, experiments using pan-specific PI3K inhibitors have suggested that PI3K signaling influences both osteoclast and osteoblast function, but the contributions of specific PI3K isoforms to these effects have not been examined. In the current work, we assessed the effects of pharmacological inhibitors of the class Ia PI3Ks, α, β, and δ, on bone cell growth, differentiation and function in vitro. Each of the class Ia PI3K isoforms is expressed and functionally active in bone cells. No consistent effects of inhibitors of p110-β or p110-δ on bone cells were observed. Inhibitors of p110-α decreased osteoclastogenesis by 60-80% (p < 0.001 vs control) by direct actions on osteoclast precursors, and decreased the resorptive activity of mature osteoclasts by 60% (p < 0.01 vs control). The p110-α inhibitors also decreased the growth of osteoblastic and stromal cells (p < 0.001 vs control), and decreased differentiated osteoblast function by 30% (p < 0.05 vs control). These data suggest that signaling through the p110-α isoform of class Ia PI3Ks positively regulates the development and function of both osteoblasts and osteoclasts. Therapeutic agents that target this enzyme have the potential to significantly affect bone homeostasis, and evaluation of skeletal endpoints in clinical trials of such agents is warranted.  相似文献   

4.
《Cell metabolism》2019,29(6):1400-1409.e5
  1. Download : Download high-res image (248KB)
  2. Download : Download full-size image
  相似文献   

5.
PI3Kα remains an attractive target for the development of anticancer targeted therapy. A number of p110α crystal structures in complex with the nSH2-iSH2 fragment of p85 regulatory subunit have been reported, including a few small molecule co-crystal structures, but the utilization of this crystal form is limited by low diffraction resolution and a crystal packing artifact that partially blocks the ATP binding site. Taking advantage of recent data on the functional characterization of the lipid binding properties of p110α, we designed a set of novel constructs allowing production of isolated stable p110α subunit missing the Adapter Binding Domain and lacking or featuring a modified C-terminal lipid binding motif. While this protein is not catalytically competent to phosphorylate its substrate PIP2, it retains ligand binding properties as indicated by direct binding studies with a pan-PI3Kα inhibitor. Additionally, we determined apo and PF-04691502 bound crystal structures of the p110α (105-1048) subunit at 2.65 and 2.85 Å, respectively. Comparison of isolated p110α(105-1048) with the p110α/p85 complex reveals a high degree of structural similarity, which validates suitability of this catalytically inactive p110α for iterative SBDD. Importantly, this crystal form of p110α readily accommodates the binding of noncovalent inhibitor by means of a fully accessible ATP site. The strategy presented here can be also applied to structural studies of other members of PI3KIA family.  相似文献   

6.
7.
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α-p110 and p85α-PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α-PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.  相似文献   

8.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is frequently upregulated in cancer. PIK3CA, the gene coding for the catalytic subunit p110α of PI3K, is mutated in about 12% of all human cancers. Most of these mutants are single amino acid substitutions that map to three positions (hot spots) in the helical or kinase domains of the enzyme. The mutant proteins show gain of enzymatic function, constitutively activate AKT signaling and induce oncogenic transformation in vitro and in animal model systems. We have shown previously that hot-spot mutations in the helical domain and kinase domain of the avian p110α have different requirements for interaction with the regulatory subunit p85 and with RAS-GTP. Here, we have carried out a genetic and biochemical analysis of these "hot-spot" mutations in human p110α. The present studies add support to the proposal that helical and kinase domain mutations in p110α trigger a gain of function by different molecular mechanisms. The gain of function induced by helical domain mutations requires interaction with RAS-GTP. In contrast, the kinase domain mutation is active in the absence of RAS-GTP binding, but depends on the interaction with p85.  相似文献   

9.
Phosphatidylinositol-3-kinases (PI3Ks) exert a variety of signaling functions in eukaryotes. We suppressed the PI3K regulatory subunit p85α using a small interfering RNA (Pik3r1 siRNA) and examined the effects on embryoid body (EB) development in hanging drop culture. We observed a 150% increase in the volume of the treated EBs within 24 h, compared to the negative controls. Fluorescence Activated Cell Sorting (FACS) assays showed that this increase in volume is not due to increased cellular proliferation. Instead, the increase in volume appears to be due to reduced cellular aggregation and adherence. This is further shown by our observation that 40% of treated EBs form twin instead of single EBs, and that they have a significantly reduced ability to adhere to culture dishes when plated. A time course over the first 96 h reveals that the impaired adherence is transient and explained by an initial 12-hour delay in EB development. Quantitative PCR expression analysis suggests that the adhesion molecule integrin-β1 (ITGB1) is transiently downregulated by the p85α suppression. In conclusion we found that suppressing p85α leads to a delay in forming compact EBs, accompanied by a transient inability of the EBs to undergo normal cell-cell and cell-substrate adhesion.  相似文献   

10.
Abstract

Context: G-protein coupled receptor (GPCR) signaling in skeletal muscle is incompletely understood; in particular, the signaling pathways that regulate GPCR-mediated signaling in skeletal muscle are only beginning to be established. Lysophosphatidic acid (LPA) is a GPCR agonist that has previously been shown to activate protein kinase D (PKD) in non-muscle cells; however, whether PKD is activated in response to LPA in skeletal muscle myoblasts, and the identities of signaling intermediates that regulate this activation, have not been defined. Objective: To determine whether PKD is activated in response to LPA administration in myoblasts, and to define the signaling pathways that mediate LPA-stimulated PKD phosphorylation. Methods: C2C12 myoblasts were treated with LPA and signaling pathways examined by means of Western immunoblotting and real-time PCR (RT-PCR). Pharmacological inhibition and RNA-interference were used to target specific molecules to determine their involvement in LPA-induced PKD phosphorylation. Results: Treatment of myoblasts with exogenous LPA revealed that PI3K p110β mediated PKD phosphorylation at Ser 748 and at Ser 916 through kinase-dependent and kinase-independent mechanisms. Loss of PKCδ, but not the loss of PKCα, prevented LPA-induced PKD phosphorylation. The PKD isoform responsive to LPA treatment was identified as PKD2. Conclusion: These results indicate that LPA-stimulated PKD2 phosphorylation requires PKCδ and non-catalytic actions of PI3K p110β, and provide new information with respect to GPCR-mediated signal transduction in myoblasts.  相似文献   

11.
Genetic alterations in PI3K (phosphoinositide 3-kinase) signalling are common in cancer and include deletions in PTEN (phosphatase and tensin homologue deleted on chromosome 10), amplifications of PIK3CA and mutations in two distinct regions of the PIK3CA gene. This suggests drugs targeting PI3K, and p110α in particular, might be useful in treating cancers. Broad-spectrum inhibition of PI3K is effective in preventing growth factor signalling and tumour growth, but suitable inhibitors of p110α have not been available to study the effects of inhibiting this isoform alone. In the present study we characterize a novel small molecule, A66, showing the S-enantiomer to be a highly specific and selective p110α inhibitor. Using molecular modelling and biochemical studies, we explain the basis of this selectivity. Using a panel of isoform-selective inhibitors, we show that insulin signalling to Akt/PKB (protein kinase B) is attenuated by the additive effects of inhibiting p110α/p110β/p110δ in all cell lines tested. However, inhibition of p110α alone was sufficient to block insulin signalling to Akt/PKB in certain cell lines. The responsive cell lines all harboured H1047R mutations in PIK3CA and have high levels of p110α and class-Ia PI3K activity. This may explain the increased sensitivity of these cells to p110α inhibitors. We assessed the activation of Akt/PKB and tumour growth in xenograft models and found that tumours derived from two of the responsive cell lines were also responsive to A66 in vivo. These results show that inhibition of p110α alone has the potential to block growth factor signalling and reduce growth in a subset of tumours.  相似文献   

12.
[目的]探讨磷脂酰肌醇3-激酶亚单位p110β(PI3K/p110β)和PTEN基因在前列腺癌中的表达.[方法]收集绵阳市中心医院2016年1月~2020年1月经手术切除的前列腺癌标本80例,取新鲜癌组织及癌旁组织作为实验样本.用实时荧光定量聚合酶链反应(PCR)法检测癌及癌旁组织PI3K/p110β及PTEN基因相对...  相似文献   

13.
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate to generate a key lipid second messenger, phosphatidylinositol 3,4,5-bisphosphate. PI3Kα and PI3Kγ require activation by RAS proteins to stimulate signaling pathways that control cellular growth, differentiation, motility and survival. Intriguingly, RAS binding to PI3K isoforms likely differ, as RAS mutations have been identified that discriminate between PI3Kα and PI3Kγ, consistent with low sequence homology (23%) between their RAS binding domains (RBDs). As disruption of the RAS/PI3Kα interaction reduces tumor growth in mice with RAS- and epidermal growth factor receptor driven skin and lung cancers, compounds that interfere with this key interaction may prove useful as anti-cancer agents. However, a structure of PI3Kα bound to RAS is lacking, limiting drug discovery efforts. Expression of full-length PI3K isoforms in insect cells has resulted in low yield and variable activity, limiting biophysical and structural studies of RAS/PI3K interactions. This led us to generate the first RBDs from PI3Kα and PI3Kγ that can be expressed at high yield in bacteria and bind to RAS with similar affinity to full-length PI3K. We also solved a 2.31 Å X-ray crystal structure of the PI3Kα-RBD, which aligns well to full-length PI3Kα. Structural differences between the PI3Kα and PI3Kγ RBDs are consistent with differences in thermal stability and may underly differential RAS recognition and RAS-mediated PI3K activation. These high expression, functional PI3K RBDs will aid in interrogating RAS interactions and could aid in identifying inhibitors of this key interaction.  相似文献   

14.
15.
16.
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.  相似文献   

17.
G-protein-regulated PI3Kγ (phosphoinositide 3-kinase γ) plays a crucial role in inflammatory and allergic processes. PI3Kγ, a dimeric protein formed by the non-catalytic p101 and catalytic p110γ subunits, is stimulated by receptor-released Gβγ complexes. We have demonstrated previously that Gβγ stimulates both monomeric p110γ and dimeric p110γ/p101 lipid kinase activity in vitro. In order to identify the Gβ residues responsible for the Gβγ-PI3Kγ interaction, we examined Gβ1 mutants for their ability to stimulate lipid and protein kinase activities and to recruit PI3Kγ to lipid vesicles. Our findings revealed different interaction profiles of Gβ residues interacting with p110γ or p110γ/p101. Moreover, p101 was able to rescue the stimulatory activity of Gβ1 mutants incapable of modulating monomeric p110γ. In addition to the known adaptor function of p101, in the present paper we show a novel regulatory role of p101 in the activation of PI3Kγ.  相似文献   

18.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important for tissue proliferation. Previously, we found that tissue regeneration after partial pancreatic resection was markedly attenuated in aged mice as compared to young mice and that this attenuation was because of an age-dependent reduction of PI3K/Akt signaling in the pancreatic acini; however, the mechanisms for the age-associated decline of pancreatic PI3K/Akt signaling remained unknown. To better delineate the mechanisms for the decreased PI3K/Akt activation with aging, age-associated changes in cell proliferation and PI3K/Akt signaling were investigated in the present study using in vitro primary pancreatic acinar cell cultures derived from young and aged mice. In response to treatment with insulin-like growth factor 1 (IGF-1), acinar cells from young but not aged mice showed increased activation of PI3K/Akt signaling and cell proliferation, indicating that intrinsic cellular mechanisms cause the age-associated changes in pancreatic acinar cells. We also found that the expression of PI3K p85α subunit, but not IGF-1 receptor or other PI3K subunits, was significantly reduced in pancreatic acinar cells from aged mice; this age-associated reduction of p85α was confirmed in both mouse and human pancreatic tissues. Finally, small interfering RNA (siRNA)-mediated knockdown of p85α expression in acinar cells from young mice resulted in markedly attenuated activation of PI3K/Akt downstream signaling in response to IGF-1. From these results, we conclude that exocrine pancreatic expression of PI3K p85α subunit is attenuated by aging, which is likely responsible for the age-associated decrease in activation of pancreatic PI3K signaling and acinar cell proliferation in response to growth-promoting stimuli.  相似文献   

19.
In addition to lipid kinase activity, the class-I PI 3-kinases also function as protein kinases targeting regulatory autophosphorylation sites and exogenous substrates. The latter include a recently identified regulatory phosphorylation of the GM-CSF/IL-3 βc receptor contributing to survival of acute myeloid leukaemia cells. Previous studies suggested differences in the protein kinase activity of the 4 isoforms of class-I PI 3-kinase so we compared the ability of all class-I PI 3-kinases and 2 common oncogenic mutants to autophosphorylate, and to phosphorylate an intracellular fragment of the GM-CSF/IL-3 βc receptor (βic). We find p110α, p110β and p110γ all phosphorylate βic but p110δ is much less effective. The two most common oncogenic mutants of p110α, H1047R and E545K have stronger protein kinase activity than wildtype p110α, both in terms of autophosphorylation and towards βic. Importantly, the lipid kinase activity of the oncogenic mutants is still inhibited by autophosphorylation to a similar extent as wildtype p110α. Previous evidence indicates the protein kinase activity of p110α is Mn2+ dependent, casting doubt over its role in vivo. However, we show that the oncogenic mutants of p110α plus p110β and p110γ all display significant activity in the presence of Mg2+. Furthermore we demonstrate that some small molecule inhibitors of p110α lipid kinase activity (PIK-75 and A66) are equally effective against the protein kinase activity, but other inhibitors (e.g. wortmannin and TGX221) show different patterns of inhibition against the lipid and protein kinases activities. These findings have implications for the function of PI 3-kinase, especially in tumours carrying p110α mutations.  相似文献   

20.
Phosphoinositide 3-kinase δ is upregulated in lymphocytic leukemias. Because the p85-regulatory subunit binds to any class IA subunit, it was assumed there is a single universal p85-mediated regulatory mechanism; however, we find isozyme-specific inhibition by p85α. Using deuterium exchange mass spectrometry (DXMS), we mapped regulatory interactions of p110δ with p85α. Both nSH2 and cSH2 domains of p85α contribute to full inhibition of p110δ, the nSH2 by contacting the helical domain and the cSH2 via the C terminus of p110δ. The cSH2 inhibits p110β and p110δ, but not p110α, implying that p110α is uniquely poised for oncogenic mutations. Binding RTK phosphopeptides disengages the SH2 domains, resulting in exposure of the catalytic subunit. We find that phosphopeptides greatly increase the affinity of the heterodimer for PIP2-containing membranes measured by FRET. DXMS identified regions decreasing exposure at membranes and also regions gaining exposure, indicating loosening of interactions within the heterodimer at membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号