首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi P-stx-12, a clinical isolate obtained from a typhoid carrier in India.  相似文献   

2.
The present study was undertaken to investigate the relationship between plasmid isolated from S. enterica serovar Typhi (pR(ST98)) and macrophage apoptosis. pR(ST98) was transferred into an attenuated S. enterica serovar Typhimurium strain RIA to create a transconjugant pRsT98/RIA. Standard S. enterica serovar Typhimurium virulence strain SR-11 was used as a positive control, and RIA as a negative one. Murine macrophage-like cell line (J774A.1) was used as an infectious cell model in vitro. In order to determine the inhibition and bactericidal effect of amikacin (AMK) to extracellular bacteria and the best optimization co-culture ratio between Salmonella and J774A.1, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of AMK to strains SR-11, pR(ST98)/RIA and RIA and multiplicity of infection (MOI) were detected first, and then J774A.1 was infected by the above three serovar Typhimurium strains. Apoptosis of J774A.1 was examined with electron microscopy and flow cytometry after annexin-V/propidium iodide labeling at 0, 1, 3, 6, 12 and 24 h. Mitochondrial membrane potential was detected by JC-1 staining method. It was demonstrated that MIC of AMK to the three strains was 10 microg/ml, MBC was 80 microg/ml, and optimal MOI was 100:1. pR(ST98)/RIA resulted in a higher apoptosis of J774A.1 than RIA, apoptotic features such as chromatin margination could be observed after 3 h, and death of J774A.1 cells was associated with the loss of mitochondrial membrane potential. These results indicated that pR(ST98) could enhance the virulence of its host bacteria, evidenced by increased macrophage apoptosis.  相似文献   

3.
4.
The genomes of most strains of Salmonella and Escherichia coli are highly conserved. In contrast, all 136 wild-type strains of Salmonella enterica serovar Typhi analyzed by partial digestion with I-CeuI (an endonuclease which cuts within the rrn operons) and pulsed-field gel electrophoresis and by PCR have rearrangements due to homologous recombination between the rrn operons leading to inversions and translocations. Recombination between rrn operons in culture is known to be equally frequent in S. enterica serovar Typhi and S. enterica serovar Typhimurium; thus, the recombinants in S. enterica serovar Typhi, but not those in S. enterica serovar Typhimurium, are able to survive in nature. However, even in S. enterica serovar Typhi the need for genome balance and the need for gene dosage impose limits on rearrangements. Of 100 strains of genome types 1 to 6, 72 were only 25.5 kb off genome balance (the relative lengths of the replichores during bidirectional replication from oriC to the termination of replication [Ter]), while 28 strains were less balanced (41 kb off balance), indicating that the survival of the best-balanced strains was greater. In addition, the need for appropriate gene dosage apparently selected against rearrangements which moved genes from their accustomed distance from oriC. Although rearrangements involving the seven rrn operons are very common in S. enterica serovar Typhi, other duplicated regions, such as the 25 IS200 elements, are very rarely involved in rearrangements. Large deletions and insertions in the genome are uncommon, except for deletions of Salmonella pathogenicity island 7 (usually 134 kb) from fragment I-CeuI-G and 40-kb insertions, possibly a prophage, in fragment I-CeuI-E. The phage types were determined, and the origins of the phage types appeared to be independent of the origins of the genome types.  相似文献   

5.
Little is known about the genetic diversity of Salmonella enterica serovar Typhi (S. Typhi) circulating in Latin America. It has been observed that typhoid fever is still endemic in this part of the world; however, a lack of standardized blood culture surveillance across Latin American makes estimating the true disease burden problematic. The Colombian National Health Service established a surveillance system for tracking bacterial pathogens, including S. Typhi, in 2006. Here, we characterized 77 representative Colombian S. Typhi isolates collected between 1997 and 2018 using pulse field gel electrophoresis (PFGE; the accepted genotyping method in Latin America) and whole genome sequencing (WGS). We found that the main S. Typhi clades circulating in Colombia were clades 2.5 and 3.5. Notably, the sequenced S. Typhi isolates from Colombia were closely related in a global phylogeny. Consequently, these data suggest that these are endemic clades circulating in Colombia. We found that AMR in S. Typhi in Colombia was uncommon, with a small subset of organisms exhibiting mutations associated with reduced susceptibility to fluoroquinolones. This is the first time that S. Typhi isolated from Colombia have been characterized by WGS, and after comparing these data with those generated using PFGE, we conclude that PFGE is unsuitable for tracking S. Typhi clones and mapping transmission. The genetic diversity of pathogens such as S. Typhi is limited in Latin America and should be targeted for future surveillance studies incorporating WGS.  相似文献   

6.
Salmonella enterica subspecies enterica serovar Typhi is a rod-shaped, Gram-negative, facultatively anaerobic bacterium. It belongs to the family Enterobacteriaceae in the class Gammaproteobacteria, and has the capability of residing in the human gallbladder by forming a biofilm and hence causing the person to become a typhoid carrier. Here we present the complete genome of Salmonella enterica subspecies enterica serotype Typhi strain P-stx-12, which was isolated from a chronic carrier in Varanasi, India. The complete genome comprises a 4,768,352 bp chromosome with a total of 98 RNA genes, 4,691 protein-coding genes and a 181,431 bp plasmid. Genome analysis revealed that the organism is closely related to Salmonella enterica serovar Typhi strain Ty2 and Salmonella enterica serovar Typhi strain CT18, although their genome structure is slightly different.  相似文献   

7.
目前伤寒沙门菌引起的人类伤寒仍是一种严重危害人类健康的疾病,且近年来多重耐药伤寒沙门菌株频频出现,使伤寒的治疗更加棘手.由于该菌具有严格的宿主特异性,又缺乏理想的动物模型,其致病机制的研究、疫苗及药物的研发受制约.新近研究发现,免疫系统人源化小鼠模型和诱导型一氧化氮合酶基因敲除小鼠模型可用于伤寒沙门菌的体内实验.本文就其应用现状及缺憾作一综述.  相似文献   

8.
9.
ObjectivesTyphoid fever is caused by Salmonella enterica serovar Typhi. OmpC, OmpF and OmpA, the three major outer membrane proteins (OMPs), could serve as vaccine candidates.MethodsThe porins antigenicity was predicted in silico. The OMP genes were amplified, cloned and expressed. Sero-reactivities of the recombinant proteins purified by denaturing method were assayed by ELISA. BALB/c mice were immunized with the recombinant porins followed by bacterial challenge.ResultsBacterial challenge of the animal model brought about antibody triggering efficacy of the antigen in OmpF > OmpC > OmpA order. Experimental findings validated the in silico results. None of the antigens had synergic or antagonistic effects on each other from immune system induction points of view. Despite their high immunogenicity, none of the antigens was protective. However, administration of two or three antigens simultaneously resulted in retardation of lethal effect. Porins, in addition to their specific functions, share common functions. Hence, they can compensate for each other's functions.ConclusionsThe produced antibodies could not eliminate the pathogenicity by blockade of one or some of the antigens. Porin antigens are not suitable vaccine candidates alone or in denatured forms. Native forms of the antigens maybe studied for protective immunogenicity.  相似文献   

10.
为研究伤寒沙门菌质粒pRST98对人巨噬细胞THP-1自噬过程的影响,以携带伤寒沙门菌质粒pRST98的野生株ST6、消除pRST98的突变株ST6-ΔpRST98和将pRST98经接合转移的回补株ST6-c-pRST98为受试菌,与THP-1共培养建立感染模型,并加入自噬作用阻断剂氯喹(CQ)进行干预。首先测定CQ单独作用对细胞及细菌的影响,确定CQ最适浓度;在细菌和细胞共作用后的不同时间点收集细胞,通过蛋白免疫印迹法(WB)和mRFP-GFP-LC3 质粒转染法检测细胞LC3Ⅱ蛋白、p62蛋白、自噬体及自噬溶酶体的变化。结果显示,30 μmol/L CQ对细胞自噬的阻断效果明显,且细胞存活率超过50%,对细菌也无明显影响。WB结果显示,用该浓度CQ干预后,ST6-ΔpRST98感染组细胞的LC3Ⅱ及p62表达量上升程度显著高于野生株ST6及回补株ST6-c-pRST98;CQ干预组3株受试菌感染细胞LC3点状结构数量均高于未加CQ组,且ST6-ΔpRST98感染细胞的点状结构数量明显增加。以上结果提示,伤寒沙门菌质粒pRST98在自噬前期发挥作用,早于溶酶体降解的过程。  相似文献   

11.
伤寒沙门菌bcfD基因敲除突变株的构建   总被引:1,自引:0,他引:1  
目的:构建伤寒沙门菌Ty2菌株菌毛亚单位bcfD基因敲除突变株.方法:利用交错PCR得到bcfD基因缺失且含其两侧翼序列的片段,将该片段与pMD 18-T连接,亚克隆到pYG4,电转入大肠埃希菌S17-1/λpir菌株,阳性菌株与受体菌伤寒沙门氏菌Ty2进行固相杂交后筛选.结果:成功获得敲除bcfD基因序列954bp的敲除突变株.结论:交错PCR有利于细菌基因精确敲除突变株的构建,bcfD基因敲除株的构建将为进一步研究该基因在伤寒沙门菌中的功能奠定了基础.  相似文献   

12.
Some bacteriophages target potentially pathogenic bacteria by exploiting surface-associated virulence factors as receptors. For example, phage have been identified that exhibit specificity for Vi capsule producing Salmonella enterica serovar Typhi. Here we have characterized the Vi-associated E1-typing bacteriophage using a number of molecular approaches. The absolute requirement for Vi capsule expression for infectivity was demonstrated using different Vi-negative S. enterica derivatives. The phage particles were shown to have an icosahedral head and a long noncontractile tail structure. The genome is 45,362 bp in length with defined capsid and tail regions that exhibit significant homology to the S. enterica transducing phage ES18. Mass spectrometry was used to confirm the presence of a number of hypothetical proteins in the Vi phage E1 particle and demonstrate that a number of phage proteins are modified posttranslationally. The genome of the Vi phage E1 is significantly related to other bacteriophages belonging to the same serovar Typhi phage-typing set, and we demonstrate a role for phage DNA modification in determining host specificity.  相似文献   

13.
Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of the systemic disease typhoid fever. Transmission occurs via ingestion of contaminated food or water. S. Typhi is specific to humans, and no animal or environmental reservoirs are known. As the free-living amoeba Acanthamoeba castellanii is an environmental host for many pathogenic bacteria, this study investigates interactions between S. Typhi and A. castellanii by using cocultures. Growth of both organisms was estimated by cell count, viable count, flow cytometry, and fluorescence microscopy. Results indicate that S. Typhi can survive at least 3 weeks when grown with A. castellanii, as opposed to less than 10 days when grown as singly cultured bacteria under the same conditions. Interestingly, growth rates of amoebae after 14 days were similar in cocultures or when amoebae were singly cultured, suggesting that S. Typhi is not cytotoxic to A. castellanii. Bacteria surviving in coculture were not intracellular and did not require a physical contact with amoebae for their survival. These results suggest that S. Typhi may have a selective advantage when it is associated with A. castellanii and that amoebae may contribute to S. Typhi persistence in the environment.  相似文献   

14.
Z66 antigen-positive strains of Salmonella enterica serovar Typhi change flagellin expression in only one direction from the z66 antigen to the d or j antigen, which is different from the phase variation of S. enterica serovar Typhimurium. In the present study, we identified a new flagellin gene in z66 antigen-positive strains of S. enterica serovar Typhi. The genomic structure of the region containing this new flagellin gene was similar to that of fljBA operon of biphasic S. enterica serovars. A fljA-like gene was present downstream of the new flagellin gene. A rho-independent terminator was located between the new flagellin gene and the fljA-like gene. Hin-like gene was not present upstream of the new flagellin gene. We generated a mutant strain of S. enterica serovar Typhi, which carries a deletion of the new flagellin gene. Western blotting revealed that the 51-kDa z66 antigen protein was absent from the population of proteins secreted by the mutant strain. Southern hybridization demonstrated that the z66 antigen-positive strains of S. enterica serovar Typhi carried the new flagellin gene and fliC on two different genomic EcoRI fragments. When z66 antigen-positive strains were incubated with anti-z66 antiserum, the flagellin expression by S. enterica serovar Typhi changed from z66 antigen to j antigen. The new flagellin gene and the fljA-like gene were absent in the strain with altered flagellin expression. These results suggested that the new flagellin gene is a fljB-like gene, which encodes the z66 antigen of S. enterica serovar Typhi, and that deletion of fljBA-like operon may explain why S. enterica serovar Typhi alters the flagellin expression in only one direction from the z66 antigen to the d or j antigen.  相似文献   

15.
16.
The type-III secretion system-I (T3SS-I) of Salmonella enterica serovar Typhimurium (S. Typhimurium) is an essential component to mediate active invasion and subsequent inflammation in genetically susceptible C57BL/6 mice. S. Typhimurium translocates its effector proteins through Salmonella Pathogenicity Island-I (SPI-I) encoded T3SS-I needle complex. This study focuses on invH gene of S. Typhimurium, which plays an active role in SPI-I mediated effector protein translocation. The deletion of invH gene in S. Typhimurium reduced the invasion efficiency of the bacterium to 70–80% as compared to wild-type S. Typhimurium (SB300) in vitro. To further investigate the role of invH gene exclusively in SPI-1 mediated inflammation, C57BL/6 mice were infected with S. Typhimurium double mutant deficient in invH and ssaV. Results indicated significant difference in the degree of cecal inflammation between wild-type S. Typhimurium and double mutant at 12 h and 48 h post infection. However this difference was found to be more prominent at 12 h p.i. In line with our findings, analysis of effector protein secretion in invH, ssaV double mutant showed reduced secretion of Sip effector proteins (SipA, SipB, SipC and SipD) as compared to the wild-type strain. The inflammation phenotype was restored on complementing invH to its respective double mutant strain. Altogether, the current study proposes a possible role of invH gene in early cecal inflammation by Salmonella Typhimurium in mice colitis model.  相似文献   

17.
In this work, we explored the acid-induced unfolding pathway of non-porin outer membrane protein (OMP), an immunogenic protein from Salmonella Typhi, by monitoring the conformational changes over a pH range of 1.0–7.0 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, and dynamic light scattering. The spectroscopic measurements showed that OMP in its native state at pH 7.0 exists in more stable and compact conformation. In contrast, at pH 2.0, OMP retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii, and nearly four-fold increase in ANS fluorescence with respect to the native state, indicating that MG state exists at pH 2.0. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of a partially unfolded state between native and unfolded state. The effect of pH on the conformation and thermostability of OMP points towards its heat resistance at neutral pH (T m?~?69 °C at pH 7.0, monitored by change in MRE222 nm). Acid unfolded state was also characterized by the lack of a cooperative thermal transition. All these results suggested that acid-induced unfolded state of OMP at pH 2.0 represented the molten globule state. The chemical denaturation studies with GuHCl and urea as denaturants showed dissimilar results. The chemical unfolding experiments showed that in both far-UV CD and fluorescence measurements, GuHCl is more efficient than urea. GuHCl is characterized by low C m (~1 M), while urea is characterized by high C m (~3 M). The fully unfolded states were reached at 2 M GuHCl and 4 M urea concentration, respectively. This study adds to several key considerations of importance in the development of therapeutic agents against typhoid fever for clinical purposes.  相似文献   

18.
Salmonella enterica serovar Typhi (S. Typhi), the aetiologic agent of typhoid fever, is a human restricted pathogen. The molecular mechanism of Salmonella pathogenicity is complex. The investigations of the molecular mechanisms of Salmonella virulence factors have shown that pathogenic Salmonella spp. are distinguished from their non-pathogenic relatives by the presence of specific pathogenicity genes, often organized in so-called pathogenicity islands (PIs). The type III secretion system (T3SS) proteins encoded by two Salmonella PIs (SPIs) are associated with the pathogenicity at molecular level. The identification of T3SS has provided new insight into the molecular factors and mechanisms underlying bacterial pathogenesis. The T3SS encoded by SPI-1 contains invasion genes; while SPI-2 is responsible for intracellular pathogenesis and has a crucial role for systemic S. enterica infections. These studies reveal a complex set of pathogenic interferences between intracellular Salmonella and its host cells. The understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be important for proper disease management.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号