首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of natural hybrid zones can illuminate aspects of lineage divergence and speciation in morphologically cryptic taxa. We studied a hybrid zone between two highly divergent but morphologically similar lineages (south‐western and south‐eastern) of the Iberian endemic Bosca's newt (Lissotriton boscai) in SW Iberia with a multilocus dataset (microsatellites, nuclear and mitochondrial genes). STRUCTURE and NEWHYBRIDS analyses retrieved few admixed individuals, which classified as backcrosses involving parental individuals of the south‐western lineage. Our results show asymmetric introgression of mtDNA beyond the contact from this lineage into the south‐eastern lineage. Analysis of nongeographic introgression patterns revealed asymmetries in the direction of introgression, but except for mtDNA, we did not find evidence for nonconcordant introgression patterns across nuclear loci. Analysis of a 150‐km transect across the hybrid zone showed broadly coincident cline widths (ca. 3.2–27.9 km), and concordant cline centres across all markers, except for mtDNA that is displaced ca. 60 km northward. Results from ecological niche modelling show that the hybrid zone is in a climatically homogenous area with suitable habitat for the species, suggesting that contact between the two lineages is unlikely to occur further south as their distributions are currently separated by an extensive area of unfavourable habitat. Taken together, our findings suggest the genetic structure of this hybrid zone results from the interplay of historical (biogeographic) and population‐level processes. The narrowness and coincidence of genetic clines can be explained by weak selection against hybrids and reflect a degree of reproductive isolation that is consistent with cryptic speciation.  相似文献   

2.
Investigating secondary contact of historically isolated lineages can provide insight into how selection and drift influence genomic divergence and admixture. Here, we studied the genomic landscape of divergence and introgression following secondary contact between lineages of the Western Diamondback Rattlesnake (Crotalus atrox) to determine whether genomic regions under selection in allopatry also contribute to reproductive isolation during introgression. We used thousands of nuclear loci to study genomic differentiation between two lineages that have experienced recent secondary contact following isolation, and incorporated sampling from a zone of secondary contact to identify loci that are resistant to gene flow in hybrids. Comparisons of patterns of divergence and introgression revealed a positive relationship between allelic differentiation and resistance to introgression across the genome, and greater‐than‐expected overlap between genes linked to lineage‐specific divergence and loci that resist introgression. Genes linked to putatively selected markers were related to prominent aspects of rattlesnake biology that differ between populations of Western Diamondback rattlesnakes (i.e., venom and reproductive phenotypes). We also found evidence for selection against introgression of genes that may contribute to cytonuclear incompatibility, consistent with previously observed biased patterns of nuclear and mitochondrial alleles suggestive of partial reproductive isolation due to cytonuclear incompatibilities. Our results provide a genome‐scale perspective on the relationships between divergence and introgression in secondary contact that is relevant for understanding the roles of selection in maintaining partial isolation of lineages, causing admixing lineages to not completely homogenize.  相似文献   

3.
Phenotypically cryptic lineages comprise an important yet understudied part of biodiversity; in particular, we have much to learn about how these lineages are formed and maintained. To better understand the evolutionary significance of such lineages, we studied a hybrid zone between two morphologically cryptic phylogeographic lineages in the rainforest lizard, Lampropholis coggeri. Analyzing a multilocus genetic dataset through cline inference, individual-based methods and population measures of disequilibrium and using simulations to explore our genetic results in context of theoretical expectations, we inferred the processes maintaining this hybrid zone. We find that these lineages meet in a hybrid zone that is narrow (≈400 m) relative to inferred dispersal rate. Further, the hybrid zone exhibits substantial genetic disequilibrium and sharply coincident and largely concordant clines. Based on our knowledge about the region's biogeography, the species' natural history, and our simulation results, we suggest that strong selection against hybrids structures this system. As all clines show a relatively narrow range of introgression, we posit that this hybrid zone might not yet be in equilibrium. Nonetheless, our results clearly show that phylogeographic lineages can evolve substantial reproductive isolation without concomitant morphological diversification, suggesting that such lineages can constitute a significant component of evolutionary diversity.  相似文献   

4.
Hybrid zones are natural laboratories offering insights into speciation processes. Narrow hybrid zones are less common in the sea than on land consistent with higher dispersal among marine populations. Acanthochromis polyacanthus is an unusual bony marine fish with philopatric dispersal that exists as allopatric stocks of white, bicoloured and black fish on the Great Barrier Reef (GBR). At two latitudes, different morphs coexist and hybridize at narrow contact zones. Sequence data from mitochondrial Hypervariable Region 1 revealed contrasting patterns of introgression across these zones. At the northern hybrid zone, a single clade of mitochondrial haplotypes was found in all white fish, hybrids and tens of kilometres into pure bicoloured stock. At the southern hybrid zone, there was no introgression of mitochondrial genes into black fish and hybrids shared the bicoloured haplotypes. Based on this asymmetry, we postulate that black fish from the southern GBR have experienced a selective sweep of their mitochondrial genome, which has resulted in almost total reproductive isolation.  相似文献   

5.
Reproductive barriers and divergence in species’ mate recognition systems underlie major models of speciation. However, hybridization between divergent species is common, and classic mechanisms to explain permeable reproductive barriers rarely consider how an individual may attain reproductive success. Alternative mating tactics (AMTs) exist in various forms across animal taxa. Such tactics may allow poorer quality individuals to gain mating opportunities and facilitate introgression either through asymmetrical positive selection or by circumventing female choice altogether in areas of secondary contact. One such tactic is satellite behaviour in frogs, where silent males perch near advertisers in an attempt to intercept females. To test whether such satellite male tactics are context‐dependent and favoured by hybrids, we genotyped and quantified the morphology of 80 male spring peeper (Pseudacris crucifer) individuals involved in caller–satellite associations from a secondary contact zone between two intraspecific mitochondrial lineages. Irrespective of population, satellite behaviour was best predicted by size but not body condition. Within the contact zone, pure individuals showed a significantly greater probability of being active callers, whereas hybrids of one lineage were more likely to adopt the satellite tactic. We suggest that satellite behaviour in P. crucifer promotes introgression, breaks down reproductive isolating barriers and contributes to asymmetrical introgression in this secondary contact zone. AMTs may thus be an underexplored but important alternative to oft‐discussed causes of genetic discordance found in hybrid zones.  相似文献   

6.
Hybridisation is increasingly recognised as an important cause of diversification and adaptation. Here, we show how divergence in male secondary sexual characters between two lineages of the common wall lizard (Podarcis muralis) gives rise to strong asymmetries in male competitive ability and mating success, resulting in asymmetric hybridisation upon secondary contact. Combined with no negative effects of hybridisation on survival or reproductive characters in F1‐hybrids, these results suggest that introgression should be asymmetric, resulting in the displacement of sexual characters of the sub‐dominant lineage. This prediction was confirmed in two types of secondary contact, across a natural contact zone and in two introduced populations. Our study illustrates how divergence in sexually selected traits via male competition can determine the direction and extent of introgression, contributing to geographic patterns of genetic and phenotypic diversity.  相似文献   

7.
The genetic structure and dynamics of hybrid zones provide crucial information for understanding the processes and mechanisms of evolutionary divergence and speciation. In general, higher levels of evolutionary divergence between taxa are more likely to be associated with reproductive isolation and may result in suppressed or strongly restricted hybridization. In this study, we examined two secondary contact zones between three deep evolutionary lineages in the common vole (Microtus arvalis). Differences in divergence times between the lineages can shed light on different stages of reproductive isolation and thus provide information on the ongoing speciation process in M. arvalis. We examined more than 800 individuals for mitochondrial (mtDNA), Y‐chromosome and autosomal markers and used assignment and cline analysis methods to characterize the extent and direction of gene flow in the contact zones. Introgression of both autosomal and mtDNA markers in a relatively broad area of admixture indicates selectively neutral hybridization between the least‐divergent lineages (Central and Eastern) without evidence for partial reproductive isolation. In contrast, a very narrow area of hybridization, shifts in marker clines and the quasi‐absence of Y‐chromosome introgression support a moving hybrid zone and unidirectional selection against male hybrids between the lineages with older divergence (Central and Western). Data from a replicate transect further support non‐neutral processes in this hybrid zone and also suggest a role for landscape history in the movement and shaping of geneflow profiles.  相似文献   

8.
9.
The northern spotted owl (Strix occidentalis caurina) is a threatened subspecies and the California spotted owl (Strix occidentalis occidentalis) is a subspecies of special concern in the western United States. Concern for their continued viability has arisen because of habitat loss caused by timber harvesting. The taxonomic status of the northern subspecies has been the subject of continuing controversy. We investigated the phylogeographical and population genetic structure of northern and California spotted owls with special reference to their region of contact. Mitochondrial DNA (mtDNA) control region sequences confirmed the existence of two well-differentiated lineages connected by a narrow hybrid zone in a region of low population density in north central California. Maximum-likelihood estimates indicated bidirectional gene flow between the lineages but limited introgression outside the region of contact. The lengths of both the mtDNA hybrid zone and the reduced density patch were similar and slightly exceeded estimates of natal dispersal distances. This suggests that the two subspecies were in secondary contact in a hybrid zone trapped by a population density trough. Consequently, the zone of interaction is expected to be geographically stable. We discovered a third, rare clade of haplotypes, which we interpreted to be a result of incomplete lineage sorting; those haplotypes result in a paraphyletic northern spotted owl with respect to the California spotted owl. A congeneric species, the barred owl (Strix varia), occasionally hybridizes with spotted owls; our results indicated an upper bound for the frequency of barred owl mtDNA haplotypes in northern spotted owl populations of 3%.  相似文献   

10.
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.  相似文献   

11.
The role of the Y chromosome in speciation is unclear. Hybrid zones provide natural arenas for studying speciation, as differential introgression of markers may reveal selection acting against incompatibilities. Two subspecies of the European rabbit (Oryctolagus cuniculus) form a hybrid zone in the Iberian Peninsula. Previous work on mitochondrial DNA (mtDNA), Y- and X-linked loci revealed the existence of two divergent lineages in the rabbit genome and that these lineages are largely subspecies-specific for mtDNA and two X-linked loci. Here we investigated the geographic distribution of the two Y chromosome lineages by genotyping two diagnostic single nucleotide polymorphisms in a sample of 353 male rabbits representing both subspecies, and found that Y chromosome lineages are also largely subspecies-specific. We then sequenced three autosomal loci and discovered considerable variation in levels of differentiation at these loci. Finally, we compared estimates of population differentiation between rabbit subspecies at 26 markers and found a surprising bimodal distribution of F(ST)values. The vast majority of loci showed little or no differentiation between rabbit subspecies while a few loci, including the SRY gene, showed little or no introgression across the hybrid zone. Estimates of population differentiation for the Y chromosome were surprisingly high given that there is male-biased dispersal in rabbits. Taken together, these data indicate that there is a clear dichotomy in the rabbit genome and that some loci remain highly differentiated despite extensive gene flow following secondary contact.  相似文献   

12.
Contact zones provide important insights into the evolutionary processes that underlie lineage divergence and speciation. Here, we use a contact zone to ascertain speciation potential in the red-eyed treefrog (Agalychnis callidryas), a brightly coloured and polymorphic frog that exhibits unusually high levels of intraspecific variation. Populations of A. callidryas differ in a number of traits, several of which are known sexual signals that mediate premating reproductive isolation in allopatric populations. Along the Caribbean coast of Costa Rica, a ~100 km contact zone, situated between two phenotypically and genetically divergent parent populations, contains multiple colour pattern phenotypes and late-generation hybrids. This contact zone provides the opportunity to examine processes that are important in the earliest stages of lineage divergence. We performed analyses of colour pattern variation in five contact zone sites and six parental sites and found complex, continuous colour variation along the contact zone. We found discordance between the geographic distribution of colour pattern and previously described genomic population structure. We then used a parental site and contact zone site to measure assortative mating and directional selection from naturally-occurring amplectant mating pairs. We found assortative mating in a parental population, but no assortative mating in the contact zone. Furthermore, we uncovered evidence of directional preference towards the adjacent parental phenotype in the contact zone population, but no directional preference in the parent population. Combined, these data provide insights into potential dynamics at the contact zone borders and indicate that incipient speciation between parent populations will be slowed.  相似文献   

13.
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi‐permeable. Using mitochondrial cytochrome b sequences and genome‐wide loci developed via ddRAD‐seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5–54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.  相似文献   

14.
Much progress in speciation research stems from documenting patterns of morphological and genetic variation in hybrid zones. Contrasting patterns of marker introgression in different sections of the contact can provide valuable insights on the relative importance of various evolutionary mechanisms maintaining species differences in the face of hybridization and gene flow and on hybrid zone temporal and spatial dynamics. We studied species interactions in the common toads Bufo bufo and B. spinosus in France and northwestern Italy using morphological and molecular data from the mitochondrial and nuclear genomes in an extensive survey, including two independent transects west and east of the Alps. At both, we found sharp, coincident and concordant nuclear genetic transitions. However, morphological clines were wider or absent and mtDNA introgression was asymmetric. We discuss alternative, nonexclusive hypotheses about evolutionary processes generating these patterns, including drift, selection, long‐distance dispersal and spatial shifts in hybrid zone location and structure. The distribution of intraspecific mtDNA lineages supports a scenario in which B. bufo held a local refugium during the last glacial maximum. Present‐day genetic profiles are best explained by an advance of B. spinosus from a nearby Iberian refugium, largely superseding the local B. bufo population, followed by an advance of B. bufo from the Balkans, with prongs north and south of the Alps, driving B. spinosus southwards. A pendulum moving hybrid zone, first northwards and then southwards, explains the wide areas of introgression at either side of the current position of the contact zones.  相似文献   

15.
Mitochondrial genome (mito‐genome) introgression among metazoans is commonplace, and several biological processes may promote such introgression. We examined two proposed processes for the mito‐genome introgression between Rana chensinensis and R. kukunoris: natural hybridization and sex‐biased dispersal. We sampled 477 individuals from 28 sites in the potential hybrid zone in the western Tsinling Mountains. Mitochondrial gene (cytb) trees were used to examine the introgression events. Microsatellite DNA loci, cytb and morphological data were used to identify hybrids and to examine the extent of natural hybridization. We detected rampant bidirectional introgressions, both ancient and recent, between the two species. Furthermore, we found a wide hybrid zone, and frequent and asymmetric hybridization. The hybrid zone cline analysis revealed a clear mitochondrial–nuclear discordance; while most nuclear markers displayed similar and steep clines, cytb had a displaced cline centre and a more gradual and wider cline. We also detected strong and asymmetric historical maternal gene flow across the hybrid zone. This widespread hybridization and detected low mito‐nuclear conflicts may, at least partially, explain the high frequency of introgression. Lastly, microsatellite data and population genetic methods were used to assess sex‐biased dispersal. A weak pattern of female‐biased dispersal was detected in both species, suggesting it may not play an important role in the observed introgression. Our data are consistent with the hybridization hypothesis, but support for the sex‐biased dispersal hypothesis is weak. We further suggest that selective advantages of the R. kukunoris‐type mito‐genome in thermal adaptation may also contribute to the introgression between the two species.  相似文献   

16.
Contact zones provide an excellent arena in which to address questions about how genomic divergence evolves during lineage divergence. They allow us to both infer patterns of genomic divergence in allopatric populations isolated from introgression and to characterize patterns of introgression after lineages meet. Thusly motivated, we analyze genome‐wide introgression data from four contact zones in three genera of lizards endemic to the Australian Wet Tropics. These contact zones all formed between morphologically cryptic lineage‐pairs within morphologically defined species, and the lineage‐pairs meeting in the contact zones diverged anywhere from 3.1 to 5.8 million years ago. By characterizing patterns of molecular divergence across an average of 11K genes and fitting geographic clines to an average of 7.5K variants, we characterize how patterns of genomic differentiation and introgression change through time. Across this range of divergences, we find that genome‐wide differentiation increases but becomes no less heterogeneous. In contrast, we find that introgression heterogeneity decreases dramatically, suggesting that time helps isolated genomes “congeal.” Thus, this work emphasizes the pivotal role that history plays in driving lineage divergence.  相似文献   

17.
Samples of Luxilus cornutus, Luxilus chrysocephalus, and their hybrids were collected along hypothesized routes of dispersal from Pleistocene refugia to examine the significance of geographic variation in patterns of introgression between these species. Patterns of allozyme and mitochondrial DNA (mtDNA) variation were generally consistent with those from previous studies. Tests of Hardy-Weinberg equilibrium revealed significant deficiencies of heterozygotes in all samples, indicating some form of reproductive isolation. Mitochondrial DNAs of each species were not equally represented in F1 hybrids; however, this bias was eliminated when the two largest samples were excluded from the analysis. Backcross hybrids exhibited biased mtDNA introgression, as samples from Lake Erie (eastern) and Lake Michigan (western) drainages showed significant excesses of mtDNAs from L. chrysocephalus and L. cornutus, respectively, relative to frequencies of diagnostic allozyme markers. The extent and direction of allozyme and mtDNA introgression was quantified by calculating isolation index values from morphologically “pure” individuals of each species from each locality. Analysis of variance of these measures identified limited introgression of allozyme variants with no geographic pattern, but significant differences in direction of mtDNA introgression between drainages (i.e., postglacial dispersal route). Association between patterns of mtDNA introgression and dispersal route across the latitudinal width of the contact zone is best explained by genetic divergence during past isolation of ancestral populations from these drainages. These results identify a significant role for historical effects in the evolution of reproductive isolation and the process of speciation.  相似文献   

18.
In the marine environment, differential gene exchange between partially reproductively isolated taxa can result in introgression that extends over long distances due to high larval dispersal potential. However, the degree to which this process contributes to interlocus variance of genetic differentiation within introgressed populations remains unclear. Using a genome-scan approach in the Indo-Pacific eel Anguilla marmorata, we investigated the degree of interpopulation genetic differentiation, the rate of introgression, and within-population genetic patterns at 858 AFLP markers genotyped in 1117 individuals. Three divergent populations were identified based on clustering analysis. Genetic assignments of individuals revealed the existence of different types of hybrids that tended to co-occur with parental genotypes in three population contact zones. Highly variable levels of genetic differentiation were found between populations across the AFLP markers, and reduced rates of introgression were shown at some highly differentiated loci. Gene flow across semipermeable genetic barriers was shown to generate spatial introgression patterns at some loci which define within-population structure over long distances. These results suggest that differential introgression in subdivided populations may be relevant when interpreting spatial variation patterns displayed by outlying loci in other marine fish populations.  相似文献   

19.
Aim We study the population differentiation and phylogeography of the Temminck’s Stint (Calidris temminckii). Specifically, we seek signs of past and present population size changes and dispersal events and evaluate management and conservation unit status of the populations. We also study the possibility of introgression as the origin of two mitochondrial DNA (mtDNA) lineages found and estimate the divergence time of the lineages. Location Northern Eurasia. Methods We analysed 583 bp of mtDNA control region domains I and II and 11 microsatellite loci from 13 localities throughout the breeding range. In addition, we used mitochondrial cytochrome c oxidase subunit I (COI), a barcoding gene, to search for signs of introgression. Results More population differentiation was found from microsatellites than from mtDNA, although differentiation was weak in both markers. Signs of past population growth were observed, in addition to more recent decline in some areas. Both control region and COI sequences revealed two maternal lineages coexisting in Fennoscandia and in north‐west Siberia. No signs of introgression were detected. Lineage divergence time was estimated to have occurred during the glacial periods of Pleistocene. Main conclusions Slight differences in mtDNA and microsatellite differentiation and diversity may reflect different features – such as the mutation rate and effective population size – of the markers used, or female‐biased dispersal pattern and high male site‐fidelity of the species. The coexistence of the two mitochondrial lineages is most likely a consequence of post‐glacial mixing of two refugial Pleistocene populations. Based on genetic information alone, global conservation concerns are not imminent. However, fast decline of a marginal Bothnian Bay population and the smallness and remoteness of a Central Yakutian population warrant conservation actions.  相似文献   

20.
The fate of species integrity upon natural hybridization depends on the interaction between selection and dispersal. The relative significance of these processes may be studied in the initial phase of contact before selection and gene flow reach equilibrium. Here we study a hybrid zone of two salamander species, Lyciasalamandra antalyana and Lyciasalamandra billae, at the initial phase of hybridization. We quantify the degree and mode of introgression using nuclear and mtDNA markers. The hybrid zone can be characterized as an abrupt transition zone, the central hybrid zone being only c. 400 m, but introgressed genes were traced up to 3 km. Introgression was traced in both sexes but gene flow may be slightly male-biased. Indirect evidence suggests that hybrid males are less viable than females. Introgression occurred at two levels: (1) locus-specific selection led to different allelic introgression patterns independent of species, while (2) asymmetrical species-level introgression occurred predominately from L. antalyana to L. billae due to range expansion of the former. This indicates that foreign genes can be incorporated into novel genomic environments, which in turn may contribute to the great diversity of morphological variants in Lyciasalamandra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号