首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to an increasing number of skin diseases as a result of exposure to ultraviolet (UV) radiation, it is necessary to evaluate the effectiveness of new skin care formulations with broad-spectrum sunscreens.
Objectives:  This study aims to assess the status of nerve fibres in healthy human skin, to quantify effects of UV radiation on nerve endings, and to evaluate neuroprotective effects of new skin care formulations against UV exposure damage.
Methods:  Samples were obtained from 34 female patients enrolled for plastic surgery and were immediately treated (10 min) with three emulsions: Cream 1, Cream 2 (placebo) and a sunscreen with sun protection factor 15 (SPF15). Control samples and those treated with the cream emulsions were exposed to UVA and UVB for 60 min. Nerve fibres were identified by immunofluorescence using a monoclonal antibody (anti-human CD56/NCAM). Cell damage was assessed by image analysis.
Results:  Several cellular nervous structures were identified in the skin samples, including free nerve endings. UVA and UVB significantly decreased (40–60%) density of nerve endings in the control samples and those treated with placebo (Cream 2) or SPF15 (all P  < 0.001). Cream 1 completely blocked effects of UV radiation on nerve endings ( P  > 0.05 vs. control).
Conclusions:  Quantification of cell damage induced by UV radiation provides useful information for identification of new skin care compounds with neuroprotective properties.  相似文献   

2.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

3.
We investigated the cell‐killing efficacy of UV light on cancer cells expressing GFP in the nucleus and RFP in the cytoplasm (dual‐color cells). After exposure to various doses of UVA, UVB, or UVC, apoptotic and viable cells were quantitated under fluorescence microscopy using dual‐color 143B human osteosarcoma cells, HT‐1080 human fibrosarcoma cells, Lewis lung carcinoma (LLC), and XPA‐1 human pancreatic cancer cells in vitro. UV‐induced cancer cell death was wave‐length and dose dependent, as well as cell‐line dependent. After UVA exposure, most cells were viable even when the UV dose was increased up to 200 J/m2. With UVB irradiation, cell death was observed with irradiation at 50 J/m2. For UVC, as little as 25 J/m2 UVC irradiation killed approximately 70% of the 143B dual‐color cells. This dose of UVB or UVA had almost no effect on the cancer cells. UV‐induced cancer cell death varied among the cell lines. Cell death began about 4 h after irradiation and continued until 10 h after irradiation. UVC exposure also suppressed cancer cell growth in nude mice in a model of minimal residual cancer (MRC). No apparent side effects of UVC exposure were observed. This study opens up the possibility of UVC treatment for MRC after surgical resection. J. Cell. Biochem. 110: 1439–1446, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
To assess the effects of UV radiation and its interaction with water availability on Mediterranean plants, we performed an experiment with seedlings of six Mediterranean species (three mesophytes vs three xerophytes) grown in a glasshouse from May to October under three UV conditions (without UV, with UVA and with UVA+UVB) and two irrigation levels (watered to saturation and low watered). Morphological, physiological and biochemical measures were taken. Exposure to UVA+UVB increased the overall leaf mass per area (LMA) and the leaf carotenoids/chlorophyll a + b ratio of plants in relation to plants grown without UV or with UVA, respectively. In contrast, we did not find a general effect of UV on the leaf content of phenols or UVB‐absorbing compounds of the studied species. Regarding plant growth, UV inhibited the above‐ground biomass production of well‐watered plants of Pistacia lentiscus. Conversely, under low irrigation, UVA tended to abolish the reduction in growth experienced by P. lentiscus plants growing in a UV‐free environment, in accordance with UVA‐enhanced apparent electron transport rate (ETR) values under drought in this species. UVA also induced an overall increase in root biomass when plants of the studied species were grown under a low water supply. In conclusion, while plant exposition to UVA favored root growth under water shortage, UVB addition only gave rise to photoprotective responses, such as the increase in LMA or in the leaf carotenoids/chlorophyll a + b ratio of plants. Species‐specific responses to UV were not related with the xerophytic or mesophytic character of the studied species.  相似文献   

5.
To evaluate the etiologic role of ultraviolet (UV) radiation in acquired dermal melanocytosis (ADM), we investigated the effects of UVA and UVB irradiation on the development and differentiation of melanocytes in primary cultures of mouse neural crest cells (NCC) by counting the numbers of cells positive for KIT (the receptor for stem cell factor) and for the L ‐3,4‐dihydroxyphenylalanine (DOPA) oxidase reaction. No significant differences were found in the number of KIT‐ or DOPA‐positive cells between the UV‐irradiated cultures and the non‐irradiated cultures. We then examined the effects of UV light on KIT‐positive cell lines derived from mouse NCC cultures. Irradiation with UVA but not with UVB inhibited the tyrosinase activity in a tyrosinase‐positive cell line (NCCmelan5). Tyrosinase activity in the cells was markedly enhanced by treatment with α‐melanocyte‐stimulating hormone (α‐MSH), but that stimulation was inhibited by UVA or by UVB irradiation. Irradiation with UVA or UVB did not induce tyrosinase activity in a tyrosinase‐negative cell line (NCCmelb4). Levels of KIT expression in NCCmelan5 cells and in NCCmelb4 cells were significantly decreased after UV irradiation. Phosphorylation levels of extracellular signal‐regulated kinase 1/2 in cells stimulated with stem cell factor were also diminished after UV irradiation. These results suggest that UV irradiation does not stimulate but rather suppresses mouse NCC. Thus if UV irradiation is a causative factor for ADM lesions, it would not act directly on dermal melanocytes but may act in indirect manners, for instance, via the overproduction of melanogenic cytokines such as α‐MSH and/or endothelin‐1.  相似文献   

6.
Ultraviolet (UV) radiation affects the extracellular matrix (ECM) of the human skin. The small leucine-rich repeat protein fibromodulin interacts with type I and II collagen fibrils, thereby affecting ECM assembly. The aim of this study was to evaluate whether short wave UV (UVB) or long wave UV (UVA) irradiation influences fibromodulin expression. Exponentially growing human fibroblasts (IMR-90 cells) were exposed to increasing doses of UVB (2.5–60 mJ/cm2) or UVA (0.5–10 J/cm2). After UV irradiation fibromodulin, p21 and GADD45 levels were evaluated as well as cell viability, reactive oxygen species formation (ROS) and DNA damage. We found that fibromodulin expression: (i) increased after UVB and UVA irradiation; (ii) was 10-fold higher after UVA (10 J/cm2) versus 5-fold with UVB (10 mJ/cm2); (iii) correlated with reactive oxygen species formation, particularly after UVA; and (iv) was linked to the DNA damage binding protein (DDB1) translocation in the nucleus, particularly after UVB. These results further suggest that the UV-induced fibromodulin increase could counteract the UV-induced connective tissue damage, promoting the assembly of new collagen fibrils.  相似文献   

7.
Abstract

In our previous report, we observed different cytokine modulation in mouse epidermis by the UVA and UVB wavebands. In the present investigations, the effects of irradiation with UVA and UVB on the Fas(CD95)/FasL system have been studied because apoptosis mediated by the interaction between Fas and FasL has been suggested recently to be associated with UVB-induced immunosuppression in mouse skin. Our results show that UVA irradiation following UVB irradiation has the ability to reduce the up-regulation of FasL expression in mouse skin resulting from the UVB irradiation.  相似文献   

8.
The effects of ultraviolet (UV) radiation on the photosynthetic and UV‐screening pigments in needles of Scots pine (Pinus sylvestris L.) saplings were studied in a UV‐exclusion field chamber experiment in northern Finland (67°N) during 2001–2002. The chambers held filters that excluded both UVB and UVA, only UVB, transmitted all UV, or lacked filters. Analyses of control needles (no filter and polyethene filter) showed that the first changes to occur in spring (end of April) was an abrupt increase in the epoxidation state (EPS) of the xanthophyll cycle pigments, likely in relation with the beginning of the photosynthetic activity. The concentration of chlorophyll, lutein, neoxanthin, α‐carotene, β‐carotene, and the size of the xanthophyll cycle pool (violaxanthin+antheraxanthin+zeaxanthin=VAZ) changed only later when needles reached their summer photosynthesis state. Exclusion of UV radiation significantly affected the xanthophyll cycle but not the other photosynthetic pigments analysed. Interestingly, the effects on xanthophylls were dependent on the sampling date. Under UVA/B‐exclusion, the EPS was increased and VAZ pool size was unchanged in April, whereas EPS remained unchanged and the VAZ pool size was reduced in May and June. The existence of two sustained and active antenna modes during winter and summer could be an explanation for the specific UV‐exclusion effect in the different season. A high‐performance liquid chromatography analysis of soluble phenolics showed that the exclusion of UVA/B radiation caused a significant effect on five compounds out of 46 studied, without affecting the concentration of the total soluble phenolics. Under UVA/B‐exclusion, the concentration of three of them (secoisolariciresinol‐glucopyranoside, two unknown) was reduced while the concentration of dicoumaroyl‐astragalin and pinosylvin monomethylether was increased compared with both controls separately. In general, the exclusion of UVA/B caused a stronger effect than the exclusion of UVB on both photosynthetic and UV screening pigments. The effects of UV radiation on xanthophyll cycle pigments were season‐specific and detectable only under stressful spring conditions (freezing temperatures and high irradiance due to snow reflection). The effect on the xanthophyll cycle could be a direct consequence of UV treatments, or an indirect consequence of the changed flavonoid composition, or a combination of both.  相似文献   

9.
To evaluate the etiologic role of ultraviolet (UV) radiation in acquired dermal melanocytosis (ADM), we investigated the effects of UVA and UVB irradiation on the development and differentiation of melanocytes in primary cultures of mouse neural crest cells (NCC) by counting the numbers of cells positive for KIT (the receptor for stem cell factor) and for the L-3,4-dihydroxyphenylalanine (DOPA) oxidase reaction. No significant differences were found in the number of KIT- or DOPA-positive cells between the UV-irradiated cultures and the non-irradiated cultures. We then examined the effects of UV light on KIT-positive cell lines derived from mouse NCC cultures. Irradiation with UVA but not with UVB inhibited the tyrosinase activity in a tyrosinase-positive cell line (NCCmelan5). Tyrosinase activity in the cells was markedly enhanced by treatment with alpha-melanocyte-stimulating hormone (alpha-MSH), but that stimulation was inhibited by UVA or by UVB irradiation. Irradiation with UVA or UVB did not induce tyrosinase activity in a tyrosinase-negative cell line (NCCmelb4). Levels of KIT expression in NCCmelan5 cells and in NCCmelb4 cells were significantly decreased after UV irradiation. Phosphorylation levels of extracellular signal-regulated kinase 1/2 in cells stimulated with stem cell factor were also diminished after UV irradiation. These results suggest that UV irradiation does not stimulate but rather suppresses mouse NCC. Thus if UV irradiation is a causative factor for ADM lesions, it would not act directly on dermal melanocytes but may act in indirect manners, for instance, via the overproduction of melanogenic cytokines such as alpha-MSH and/or endothelin-1.  相似文献   

10.
UV‐induced melanogenesis is a well known physiological response of human skin exposed to solar radiation; however, the signaling molecules involved in the stimulation of melanogenesis in melanocytes following UV exposure remain unclear. In this study we induced melanogenesis in vitro in normal human epidermal melanocytes using a single irradiation with UVA at 1 kJ/m2 and examined the potential involvement of mitogen‐activated protein kinases (MAPK) as UVA‐responsive signaling molecules in those cells. UVA irradiation did not affect the proliferation of melanocytes, but it did increase tyrosinase mRNA expression, which reached a maximum level 4 hr after UVA irradiation. The amount of tyrosinase protein, as quantitated by immunoblotting, was also increased at 24 hr following UVA irradiation. Among the MAPK examined, extracellular signal‐related kinase (ERK) 1/2 was phosphorylated within 15 min of UVA irradiation, but no such phosphorylation was observed for c‐Jun N‐terminal kinases (JNK) or p38. Accordingly, the activity of ERK1/2 was also increased shortly after UVA irradiation. These responses of ERK1/2 to UVA irradiation were markedly inhibited when cells were pre‐treated with N‐acetyl‐l ‐cysteine, an antioxidant, or with suramin, a tyrosine kinase receptor inhibitor. The formation of (6‐4)photoproducts or cyclobutane pyrimidine dimers was not detected in cellular DNA after UVA irradiation. These findings suggest that a single UVA irradiation‐induced melanogenesis is associated with the activation of ERK1/2 by upstream signals that originate from reactive oxygen species or from activated tyrosine kinase receptors, but not from damaged DNA.  相似文献   

11.
A mat-forming cyanobacterium (Phormidium mur-rayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiances. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/ chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity.  相似文献   

12.
The first and main target-structure of ultraviolet (UV) radiation in animals is the body surface, including the skin and eyes. Here, we investigated cell damage in the visual system of the crab Neohelice granulata acclimated to constant light and exposed to UVA or UVB at 12:00 h for 30 min. The reactive oxygen species (ROS) production, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO) damage, catalase (CAT) activity, and the melatonin immunohistochemical reactivity in the eyestalks were evaluated. The animals that received melatonin and were exposed to UVA and UVB radiation showed a decreased ROS concentration (p < 0.05).The ACAP test showed a decrease (p < 0.05) in their values when the animals received 2 pmol/crab of melatonin (physiological dose) before the exposure to UVA radiation. The animals exposed to UVB radiation after receiving the same dose of melatonin showed an increase (p < 0.05) in the ACAP test compared with the animals exposed to UVB radiation after receiving only crab physiological saline. The CAT activity increased (p < 0.05) in the animals that received melatonin and were exposed to UVA and UVB radiation. Animals exposed to UVA and UVB displayed an increase (p < 0.05) in the LPO levels, whereas animals treated with melatonin showed lower (p < 0.05) LPO levels when irradiated. The results indicate that the specific oxidative parameters altered by UV radiation can be modulated by a physiological dose of melatonin. Moreover, the melatonin regularly produced by virtually all eyestalk cells suggests that it may function to modulate the noxious effects of radiation, at least in the crab N. granulata.  相似文献   

13.
Since different wavelengths of light impact different cellular targets, microorganisms exposed to natural sunlight experience a combination of multiple stressors. In order to better understand the effects of sunlight on microorganisms we, therefore, need to understand how different wavelength act alone and in combination. Here, we describe a synergistic effect between UVA and UVB irradiation on viability of Escherichia coli bacteria. To investigate the basis of this synergistic effect we analysed mutant strains that were obtained through selection for increased resistance to combined UVA and UVB. By identifying and reconstructing genetic changes in the resistant strains we provide evidence that UVA‐absorbing thiouridine residues in tRNAs are the key to the synergistic effect. Our study provides insights into how naturally occurring combinations of stressors can interact, and points to new ways for controlling microbial populations.  相似文献   

14.
Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm2 for UVA and 2.15 J/cm2 for UVB. Maximal response was achieved with 10.0 J/cm2 UVA and 8.6 J/cm2 UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm2 UVA and 0.29 J/cm2 UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.  相似文献   

15.
Ultraviolet (UV) B irradiation evokes erythema and delayed pigmentation in skin, where a variety of toxic and modulating events are known to be involved. Nitric oxide (NO) is generated from l ‐arginine by NO synthases (NOS). Production of NO is enhanced in response to UVB‐stimulation and has an important role in the development of erythema. NO has recently been demonstrated as a melanogen which stimulates melanocytes in vitro, however, no known in vivo data has been reported to support this finding. In this study, we investigated the contribution of NO with UV‐induced pigmentation in an animal model using an NOS inhibitor. UVB‐induced erythema in guinea pig skin was reduced when an NOS inhibitor, l ‐NAME (N‐nitro‐ l ‐arginine methylester hydrochloride), was topically applied to the skin daily, beginning 3 days before UVB‐irradiation. Delayed pigmentation and an increased number of DOPA‐positive melanocytes in the skin were markedly suppressed by sequential daily treatment with l ‐NAME. Furthermore, melanin content 13 days after UVB‐irradiation was significantly lower in skin treated with l ‐NAME than in the controls. In contrast, d ‐NAME (N‐nitro‐ d ‐arginine methylester hydrochloride), an ineffective isomer of l ‐NAME, demonstrated no effect on these UV‐induced skin responses. These results suggest that NO production may contribute to the regulation of UVB‐induced pigmentation.  相似文献   

16.
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280–400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2 evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2‐enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV‐absorptivity increased under the high pCO2/low pH condition. Nevertheless, UV‐induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2‐acidified seawater, suggesting that the calcified layer played a UV‐protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5–2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.  相似文献   

17.
Aims: The major objective of the study was to evaluate the enhanced germicidal effects of low‐frequency pulsed ultraviolet A (UVA)‐light‐emitting diode (LED) on biofilms. Methods and Results: The germicidal effects of UVA‐LED irradiation (365 nm, 0·28 mW cm?2, in pulsed or continuous mode) on Candida albicans or Escherichia coli biofilms were evaluated by determining colony‐forming units. The morphological change of microbial cells in biofilms was observed using scanning electron microscopy. After 5‐min irradiation, over 90% of viable micro‐organisms in biofilms had been killed, and pulsed irradiation (1–1000 Hz) had significantly greater germicidal ability than continuous irradiation. Pulsed irradiation (100 Hz, 60 min) almost completely killed micro‐organisms in biofilm (>99·9%), and 20‐min irradiation greatly damaged both microbial species. Interestingly, few hyphae were found in irradiated Candida biofilms. Moreover, mannitol treatment, a scavenger of hydroxyl radicals (OH?), significantly protected viable micro‐organisms in biofilms from UVA‐LED irradiation. Conclusions: The study demonstrated that pulsed UVA‐LED irradiation has a strong germicidal effect (maximum at 100 Hz, over 5‐min irradiation) and causes the disappearance of hyphal forms of Candida. Significance and Impact of the Study: This study can assist in developing a low‐frequency pulsed UVA‐LED system to be applied to pathogenic biofilms for disinfection.  相似文献   

18.
Boreal tree species are excellent tools for studying tolerance to climate change. Bud phenology is a trait, which is highly sensitive to environmental fluctuations and thus useful for climate change investigations. However, experimental studies of bud phenology under simulated climate change outdoors are deficient. We conducted a multifactorial field experiment with single (T, UVA, UVB) and combined treatments (UVA+T, UVB+T) of elevated temperature (T, +2°C) and ultraviolet‐B radiation (+30% UVB) in order to examine their impact on both male and female genotypes of aspen (Populus tremula L.). This study focuses on the effect of the treatments in years 2 and 3 after planting (2013, 2014) and follows how bud phenology is adapting in year 4 (2015), when the treatments were discontinued. Moreover, the effect of bud removal was recorded. We found that elevated temperature played a key role in delaying bud set and forcing bud break in intact individuals, as well as slightly delaying bud break in bud‐removed individuals. UVB delayed the bud break in bud‐removed males. In addition, both UVA and UVB interacted with temperature in year 3 and even in year 4, when the treatments were off, but only in male individuals. Axillary bud removal forced both bud break and bud set under combined treatments (UVA+T, UVB+T) and delayed both under individual treatments (T, UVB). In conclusion, male aspens were more responsive to the treatments than females and that effect of elevated temperature and UV radiation on bud set and bud break of aspen is not disappearing over 4‐year study period.  相似文献   

19.
This study examined the effects of the combination of UV radiation and water limitation on the leaf photosynthesis, stomatal conductance, and terpene emissions of four Mediterranean species. 1-year-old seedlings of these Mediterranean species [Daphne gnidium L., Pistacia lentiscus L., Ilex aquifolium L. and Laurus nobilis L.] were grown under one of three UV treatments (without UV, with UVA, or with UVA + UVB) and two watering regimes (high and low water supply). In general, UV treatments did not affect significantly leaf photosynthesis or stomatal conductance, although UVA and UVB radiation in September led to a reduction in leaf stomatal conductance in D. gnidium. Leaf photosynthesis rates did not differ significantly between the two watering treatments, even though, in three of the species, leaf stomatal conductance was significantly higher among the well-watered plants. The effects of UV on terpene emissions were species-specific; D. gnidium had the highest terpene emission rates when grown under UVA + UVB radiation, which was also true for L. nobilis in September. Overall, UV treatments did not have a significant effect on total terpene emission rates in I. aquifolium, but UVB and UVA in July and September, respectively, reduced emission rates in P. lentiscus. A limited water supply reduced the terpene emission rates in D. gnidium, increased emissions in L. nobilis, and did not affect the emission rates in the other two species.  相似文献   

20.
High-energy wavelengths in the ultraviolet-B (UVB, 280-315 nm) and the UVA (315-400-nm) portion of the spectrum are harmful to terrestrial and aquatic organisms. Interestingly, UVA is also involved in the repair of UV induced damage. Organisms living in shallow coral reef environments possess UV absorbing compounds, such as mycosporine-like amino acids, to protect them from UV radiation. While it has been demonstrated that exposure to UV (280-400 nm) affects the UV absorbance of fish mucus, whether the effects of UV exposure vary between UVB and UVA wavelengths is not known. Therefore, we investigated whether the UVB, UVA, or photosynthetically active radiation (PAR, 400-700 nm) portions of the spectrum affected the UV absorbance of epithelial mucus and Fulton’s body condition index of the cleaner fish Labroides dimidiatus. We also compared field-measured UV absorbance with laboratory based high-performance liquid chromatography measurements of mycosporine-like amino acid concentrations. After 1 week, we found that the UV absorbance of epithelial mucus was higher in the UVB+UVA+PAR treatment compared with the UVA+PAR and PAR only treatments; after 2 and 3 weeks, however, differences between treatments were not detected. After 3 weeks, Fulton’s body condition index was lower for fish in the UVB+UVA+PAR compared with PAR and UVA+PAR treatments; furthermore, all experimentally treated fish had a lower Fulton’s body condition index than did freshly caught fish. Finally, we found a decrease with depth in the UV absorbance of mucus of wild-caught fish. This study suggests that the increase in UV absorbance of fish mucus in response to increased overall UV levels is a function of the UVB portion of the spectrum. This has important implications for the ability of cleaner fish and other fishes to adjust their mucus UV protection in response to variations in environmental UV exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号