首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fitness costs of resistance to Bacillus thuringiensis (Bt) crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella), resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.  相似文献   

2.
Selection for resistance to insecticides, diseases and parasitoids is assumed to be costly and often requires tradeoffs with reproductive fitness. The costs of resistance, however, are often difficult to measure. Cabbage looper, Trichoplusia ni, a generalist Lepidopteran herbivore, has become highly resistant following the extensive use of the microbial insecticide, Bacillus thuringiensis kurstaki (Bt) in vegetable greenhouses. We compared the growth rate, pupal size and survival of resistant, susceptible and hybrid T. ni larvae fed on tomato, bell pepper and cucumber. Performance was best on cucumber and worst on pepper, and the magnitude of fitness costs associated with Bt resistance increased with declining host plant suitability. This supports the hypothesis that in this system, resistance costs are condition dependent and are greatest in the most stressful environment. Management strategies that rely on the presence of fitness costs to reduce the frequency of resistance genes must consider this variation and should be more successful on crops that are less suitable food plants. In general, condition dependence should be considered in studies designed to measure the costs of resistance.  相似文献   

3.
1. Plants perceive herbivore damage or increased risk and respond. These changes may increase plant fitness, although effects on fitness have often been assumed without supporting evidence. 2. Three models have been proposed to explain induced rather than constitutive defence. The optimal defence model posits that induction allow plants to reduce allocation costs; it predicts demonstrably lower costs when defences are not needed. The moving target model posits that induction increases spatial and temporal variability; it predicts that variability will be difficult for herbivores and will provide defence. The information transfer model posits that induced responses provide cues to other tissues on that individual plant and to other organisms in the community; it predicts that induced cues will provide systemic resistance, deter herbivores, and/or attract enemies of herbivores, thereby benefiting the induced plant. 3. All three models predict that cues must be reliable to be useful. In some cases, cues provide specific information about the damaged plant tissue and the herbivore and this specific information may allow plants to fine-tune responses. Recent theory posits that selection should favour plants that minimise recognition errors and reduce fitness costs associated with errors. 4. Future research should focus on exploring different modalities used by plants to perceive herbivore risk, the benefits and costs of perceiving cues and inducing resistance, and the basic natural history of these phenomena. Induced responses have great unrealised potential in agriculture, and research should focus on host plant resistance rather than attempting to involve other trophic levels.  相似文献   

4.
Studies of the reduction of fitness in plants expressing resistance characteristics have always been popular. New techniques for manipulating defense expression have recently resulted in a greater understanding of the mechanisms through which different types of resistance strategies produce costs, especially those costs associated with inducible defenses.  相似文献   

5.
Plants vary in their resistance to tetranychid spider mites, and this can have profound effects on spider-mite population dynamics. Such variation can be attributable to many factors. In this review, however, we focus on how previous or concurrent feeding by phytophagous hervivores influences expression of plant resistance to spider mites.Induced resistance is a change in the host plant in response to extrinsic stimuli, resulting in reduced host suitability for the population growth of spider mites. We begin our review by summarizing the different ways in which spider mites and plants interact to produce induced resistance-like phenomena. We then discuss a number of hypotheses which address the mechanisms underlying induced resistance and end by suggesting agricultural applications. Although the potential use of induced resistance to manage spider mites is apparent, progress in this area will depend on a better understanding of the mechanisms involved and their associated costs and benefits to the plant.  相似文献   

6.
Under the gene-for-gene model of host-pathogen coevolution, recognition of pathogen avirulence factors by host resistance factors triggers host defenses and limits infection. Theory predicts that the evolution of higher levels of pathogenicity will be associated with fitness penalties and that the cost of higher pathogenicity must be much smaller than that of not infecting the host. The analysis of pathogenicity costs is of academic and applied relevance, as these are determinants for the success of resistance genes bred into crops for disease control. However, most previous attempts of addressing this issue in plant pathogens yielded conflicting and inconclusive results. We have analyzed the costs of pathogenicity in pepper-infecting tobamoviruses defined by their ability to infect pepper plants with different alleles at the resistance locus L. We provide conclusive evidence of pathogenicity-associated costs by comparison of pathotype frequency with the fraction of the crop carrying the various resistance alleles, by timescaled phylogenies, and by temporal analyses of population dynamics and selection pressures using nucleotide sequences. In addition, experimental estimates of relative fitness under controlled conditions also provided evidence of high pathogenicity costs. These high pathogenicity costs may reflect intrinsic properties of plant virus genomes and should be considered in future models of host-parasite coevolution.  相似文献   

7.
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host–plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.  相似文献   

8.
In this study we present a simple optimization model for the evolution of defensive strategies (tolerance and resistance) of plants against their natural enemies. The model specifically evaluates the consequences of introducing variable costs and benefits of tolerance and resistance and nonlinear cost-and-benefit functions for tolerance and resistance. Incorporating these assumptions, the present model of plant defense predicts different evolutionary scenarios, not expected by previous work. Basically, the presence of an adaptive peak corresponding to intermediate levels of allocation to tolerance and resistance can arise when the shape parameter of the cost function is higher than the corresponding of the benefit function. The presence of two alternatives peaks of maximum tolerance and maximum resistance occurs only when benefits of tolerance and resistance interact less than additive. Finally, the presence of one peak of maximum resistance or maximum tolerance depends on the relative values of the magnitude of costs for tolerance and resistance. An important outcome of our model is that under a plausible set of conditions, variable costs of tolerance and resistance can represent an important aspect involved in the maintenance of intermediate levels of tolerance and resistance, and in favoring adaptive divergence in plant defensive strategies among populations. The model offers a framework for future theoretical and empirical work toward understanding spatial variation in levels of allocation to different defensive strategies.  相似文献   

9.
Models regarding the evolution of plant resistance to herbivory often assume that the primary mechanism maintaining resistance polymorphisms is the balance between benefits of increased resistance to herbivores and costs associated with the production of a resistance character. However, rarely has it been demonstrated that genetically based resistance traits are costly. Here, we document costs associated with the production of glandular trichomes, a resistance character in Datura wrightii that is predominantly under the control of a single gene of large effect. In the absence of herbivores, plants with glandular trichomes (sticky) produced 45% fewer viable seeds than plants with nonglandular trichomes (velvety). Although both plant types flowered with similar frequency, sticky plants matured fewer capsules and fewer of their seeds germinated. The fitness difference between the types in herbivore-free conditions was not mitigated by the addition of water, a potentially limiting resource for sticky plants. Under herbivore pressure, there was no significant fitness difference between the types, although the fitness of velvety plants was still higher than that of sticky plants. This occurred even though velvety plants sustained more herbivore damage than sticky plants and were more likely to be attacked by most herbivore species present. The fitness difference between the plant types was especially reduced when herbivore-attacked plants were watered, which indicates that sticky plants may have higher tolerance for damage than velvety plants when supplied with a potentially limiting resource. Yet, the maintenance of a fitness deficit (albeit small and nonsignificant) for sticky plants when attacked by herbivores indicates no net benefit associated with the production of glandular trichomes in this first year of our study. These results add to our current understanding that herbivore resistance characters can be costly and raise the question of how this genetic polymorphism is maintained in wild populations.  相似文献   

10.
Anurag A. Agrawal 《Oikos》2000,89(3):493-500
Inducible plant resistance against herbivores is becoming a paradigm of plant–herbivore ecology. Fundamental to understanding induced resistance and its evolutionary ecology is specificity of "induction" and "effects". Specificity in the induction of resistance refers to whether plant damage by various herbivores causes the same response in plants. Specificity in the effects of induced resistance refers to whether induction has the same consequences (i.e., reduced preference or performance) for various herbivores. I examined both specificity of induction and effect employing four lepidopteran herbivores and wild radish plants, a system for which fitness benefits and costs of induction have been documented for the plant. Variation in the specificity of induction and effects of induced plant resistance was found; however, this variation was not associated with diet specialization in the herbivores (i.e., specialists vs generalists). Induction caused by Plutella (specialist) and Spodoptera (generalist) resulted in general resistance to all of the herbivores, induction caused by Pieris (specialist) induced resistance only to Spodoptera (generalist) and Pieris , and plant damage by Trichoplusia (generalist) failed to induce resistance and reduce the performance of any of the herbivores. To the contrary, plants damaged by Trichoplusia supported enhanced growth of subsequently feeding Trichoplusia compared to uninduced controls. These results add a novel level of complexity to interactions between plants and leaf chewing caterpillars. Within the same guild of feeders, some herbivores cause strong induced resistance, no induced resistance, or induced susceptibility. Similarly, caterpillar species were variable in the level to which induced resistance affected their performance. Such interactions limit the possibility of pairwise coevolution between plants and herbivores, and suggest that coevolution can only be diffuse.  相似文献   

11.
Changes in herbivory and resource availability during a plant's development should promote ontogenetic shifts in resistance and tolerance, if the costs and benefits of these basic strategies also change as plants develop. We proposed and tested a general model to detect the expression of ontogenetic tradeoffs for these two alternative anti-herbivory strategies in Raphanus sativus . We found that ontogenetic trajectories occur in both resistance and tolerance but in opposite directions. The juvenile stage was more resistant but less tolerant than the reproductive stage. The ontogenetic switch from resistance to tolerance was consistent with the greater vulnerability of young plants to leaf damage and with the costs of resistance and tolerance found at each stage. We posit that the ontogenetic perspective presented here will be helpful in resolving the current debate on the existence and detection of a general resistance–tolerance tradeoff.  相似文献   

12.
Mechanisms leading to nonhost resistance of plants against nonadapted pathogens are thought to have great potential for the future management of agriculturally important diseases. In this article, we report an investigation of nonhost resistance motivated by the advantages of studying an interaction between two model organisms, namely Arabidopsis thaliana and Magnaporthe oryzae. During the course of our studies, however, we discovered an unexpected plasticity in the responses of Arabidopsis against this ostensibly nonhost pathogen. Thus, we elucidated that certain experimental conditions, such as the growth of plants under long days at constantly high humidity and the use of high inoculum concentrations of M. oryzae conidia, forced the interaction in leaves of some Arabidopsis ecotypes towards increased compatibility. However, sporulation was never observed. Furthermore, we observed that roots were generally susceptible to M. oryzae, whereas leaves, stems and hypocotyls were not infected. It must be concluded, therefore, that Arabidopsis roots lack an effective defence repertoire against M. oryzae, whereas its leaves possess such nonhost defence mechanisms. In summary, our findings point to organ-specific determinants and environmental conditions influencing the effectiveness of nonhost resistance in plants.  相似文献   

13.
Fitness costs of resistance are among the most widely discussed explanations for the evolution of induced resistance, but studies on induced resistance to pathogens are scarce and contradictory. In the present study the influence of nitrogen supply, length of the growing period and competition on the seed production of Arabidopsis in response to treatment with the chemical resistance elicitor BION® was investigated. BION® treatment elicited resistance to the bacterial pathogen Pseudomonas syringae, and biochemical changes after BION® treatment were similar to those observed after bacterial infection. Induced plants grew more slowly during the first week after resistance induction, for which they then compensated by exhibiting faster growth than controls. Whether or not induced plants produced less seeds than controls depended on growing conditions. Costs, no costs and even higher seed production by induced plants were observed in experiments differently combining abiotic conditions. A higher seed production by induced plants arose particularly when the vegetation period was short, most probably a consequence of senescence-related processes that had been activated by resistance elicitation. Induced plants, however, produced less seeds when competing with controls and experiencing a full growing period. Studies controlling only some of the critical environmental factors can easily lead to apparently contradictory results, which in fact represent different outcomes of a complex interplay of factors.  相似文献   

14.
Resistance responses can impose fitness costs when pests are absent. Here, we test whether the induction of resistance can decrease fitness even in plants under attack; we call this potential outcome a net cost with attack. Using lines in which genetic background was controlled, we investigated whether susceptible Arabidopsis thaliana plants can outperform R gene resistant plants when infected with pathogens. For the R gene RPS2, there was a fitness benefit of resistance in the presence of intraspecific competition, but there was a net cost in the absence of competition: resistant plants produced less seed than susceptible plants even though infected with Pseudomonas syringae. This net cost was primarily due to overcompensation by susceptible plants, which occurred because of a developmental response to infection. For the R gene RPP5, there was no fitness effect of resistance without competition but a net cost when plants were infected with Peronospora parasitica in the presence of competition. This net cost was due to a reduction in the fitness of infected, resistant plants and complete compensation in susceptible plants. A spatially variable model suggests that a trade-off between net benefits and net costs with attack may help explain the persistence of individuals lacking R gene resistance to disease.  相似文献   

15.
In this paper, we examine how ecological costs of resistance might be manifested through plant relationships with pollinators. If defensive compounds are incorporated into floral structures or if they are sufficiently costly that fewer rewards are offered to pollinators, pollinators may discriminate against more defended plants. Here we consider whether directional selection for increased resistance to herbivores could be constrained by opposing selection through pollinator discrimination against more defended plants. We used artificial selection to create two populations of Brassica rapa plants that had high and low myrosinase concentrations and, consequently, high and low resistance to flea beetle herbivores. We measured changes in floral characters of plants in both damaged and undamaged states from these populations with different resistances to flea beetle attack. We also measured pollinator visitation to plants, including numbers of pollinators and measures of visit quality (numbers of flowers visited and time spent per flower). Damage from herbivores resulted in reduced petal size, as did selection for high resistance to herbivores later in the plant lifetime. In addition, floral display (number of open flowers) was also altered by an interaction between these two effects. Changes in floral traits translated into overall greater use of low-resistance, undamaged plants based on total amount of time pollinators spent foraging on plants. Total numbers of pollinators attracted to plants did not differ among treatments; however, pollinators spent significantly more time per flower on plants from the low-resistance population and tended to visit more flowers on these plants as well. Previous work by other investigators on the same pollinator taxa has shown that longer visit times are associated with greater male and female plant fitness. Because initial numbers of pollinators did not differ between selection regimes, palatability and/or amount of rewards offered by high- and low-resistance populations are likely to be responsible for these patterns. During periods of pollinator limitation, less defended plants may have a selective advantage and pollinator preferences may mediate directional selection imposed by herbivores. In addition, if pollinator preferences limit seed set in highly defended plants, then lower seed set previously attributed to allocation costs of defense may also reflect greater pollinator limitation in these plants relative to less defended plants.  相似文献   

16.
An integrated system trade-off model has been developed to assess costs and pollution associated with transportation in the coke-making supply chain in Shanxi Province, China. A transportation-flow, cost-minimization solver is combined with models for calculating coke-making plant costs, estimating transportation costs from a geographic information system road and rail database, and aggregating coke-making capacity among plants. Model outputs of economic cost, nitrogen oxides (NOx) emissions, and transport distributions are visualized using an Internet-based graphic user interface. Data for the model were collected on survey trips to Shanxi Province as well as from secondary references and proxies. The modularity and extensibility of the system trade-off model facilitate introduction of new data sets in order to examine various planning scenarios.
Scenarios of coke-making plant aggregation, rail infrastructure improvement, and technology transfer were evaluated using the model. Costs and pollution emissions can be reduced by enlarging coke-making plants near the rail stations and closing down other plants. Preferential minimization of transportation costs gives a lower total cost than simply minimizing plant costs. Therefore, policy makers should consider transportation costs when planning the reallocation of coke-making capacity in Shanxi Province. Increasing rail-transport capacity is less effective than aggregating plant capacity. On the other hand, transfer of low-pollution truck technology results in a large emission reduction, however, reflecting the importance of truck transportation in the Shanxi Province coke-making industry.  相似文献   

17.
Worldwide, we rely on introduced plants for the essentials of human life; however, intentional plant introductions for commercial benefit have resulted in invaders with negative environmental, economic or social impacts. We argue that plant species of low expected economic value should be less acceptable for introduction than species of high economic value if their other traits are similar; however, key traits such as likelihood of escape and costs of escape are often highly uncertain. Methods do not currently exist which allow decision makers to evaluate costs and benefits of introduction under uncertainty. We developed a cost-benefit analysis for determining plant introduction that incorporates probability of escape, expected economic costs after escape, expected commercial benefits, and the efficiency and cost of containment. We used a model to obtain optimal decisions for the introduction and containment of commercial plants while maximizing net benefit or avoiding losses. We also obtained conditions for robust decisions which take into account severe uncertainty in model parameters using information-gap decision theory. Optimal decisions for introduction and containment of commercial plants depended, not only on the probability of escape and subsequent costs incurred, but also on the anticipated commercial benefit, and the cost and efficiency of containment. When our objective is to maximize net benefit, increasing uncertainty in parameter values increased the likelihood of introduction; in contrast, if our objective is to avoid losses, more uncertainty decreased the likelihood of introduction.  相似文献   

18.
Modelling the origins of legume domestication and cultivation   总被引:1,自引:0,他引:1  
Ladizinsky’s (1987) mathematical model of the domestication of lentils and other Near Eastern legumes is invalid. Ladizinsky believed that the model predicts that high rates of seed harvesting would lead to fixation, in wild populations, of genes conferring lack of seed dormancy (a domesticated trait). In fact, however, the model gives rapid fixation of alleles for non-dormancy underall circumstances; gathering by humans has no effect on allelic frequencies. It appears that in these species cultivation must have preceded the morphological changes that distinguish domesticated from wild plants. The addition of more realistic assumptions to the model does not alter this conclusion. I suggest several scenarios that could explain Near Eastern legume domestication: the most plausible of these postulates that cultivation of cereals led to scheduling conflicts which necessitated the abandonment of harvesting of wild legumes, and hence the initiation of their cultivation. Mathematical modelling may be able to contribute to our understanding of agricultural origins, but it must be carried out with greater rigor and closer attention to the theoretical literature.  相似文献   

19.
Ecological costs of induced resistance   总被引:9,自引:0,他引:9  
There has been rapid progress in detecting the genetic or allocation costs of induced resistance. In addition to these 'internal' costs, ecological costs may result from external mechanisms, that is, from the detrimental effects of resistance on the plant's interactions with its environment. All evolutionarily relevant costs affect a plant's ability to perform under natural conditions. The conceptual separation of different forms of resistance costs simplifies the study of mechanisms by which these costs arise. Yet, integrative measures of fitness must be applied under natural conditions so that researchers can fully understand the costs and benefits of induced resistance.  相似文献   

20.
The nature and cost of single genes of major effect is one of the longest running controversies in biology. Resistance, whether to xenobiotics or to parasites, is often paraded as an obvious example of a single gene effect that must carry an associated fitness 'cost'. However, a review of the xenobiotic resistance literature shows that empirical evidence for this hypothesis is, in fact, scarce. We postulate that such fitness costs can only be fully interpreted in the light of the molecular mutations that might underlie them. We also derive a theoretical framework both to encompass our current understanding of xenobiotic resistance and to begin to dissect the probable cost of parasite resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号