首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We carried out a comparison among the floristic patterns of four different plant groups (palms, trees, melastomes and pteridophytes) in a lowland rainforest site in Peruvian Amazonia. The study site consisted of a mosaic of edaphic patches reflecting the different geological formations that can be found on the surface. We collected the data along a linear transect (500 m long, divided into 20 × 20 m or 5 × 20 m subplots), and recorded of the four plant groups all individuals that exceeded a minimum size limit predefined for each plant group. We also recorded the drainage conditions and soil type classes in each subplot of the transect. The results indicated that different plant groups can produce similar floristic patterns in local spatial scales, and that these patterns reflect similarities in edaphic conditions. All matrix correlations calculated between pairs of the four plant groups were positive and statistically significant. Floristic composition in all plant groups correlated with soil class, and to a somewhat lesser degree with drainage. These results imply that any one of the four plant groups could serve as a rough indicator of more general floristic patterns, and that even the inventory of a limited part of the flora can shed light on the floristic variation found in Amazonian forests.  相似文献   

2.
Amazonia combines semi‐continental size with difficult access, so both current ranges of species and their ability to cope with environmental change have to be inferred from sparse field data. Although efficient techniques for modeling species distributions on the basis of a small number of species occurrences exist, their success depends on the availability of relevant environmental data layers. Soil data are important in this context, because soil properties have been found to determine plant occurrence patterns in Amazonian lowlands at all spatial scales. Here we evaluate the potential for this purpose of three digital soil maps that are freely available online: SOTERLAC, HWSD, and SoilGrids. We first tested how well they reflect local soil cation concentration as documented with 1,500 widely distributed soil samples. We found that measured soil cation concentration differed by up to two orders of magnitude between sites mapped into the same soil class. The best map‐based predictor of local soil cation concentration was obtained with a regression model combining soil classes from HWSD with cation exchange capacity (CEC) from SoilGrids. Next, we evaluated to what degree the known edaphic affinities of thirteen plant species (as documented with field data from 1,200 of the soil sample sites) can be inferred from the soil maps. The species segregated clearly along the soil cation concentration gradient in the field, but only partially along the model‐estimated cation concentration gradient, and hardly at all along the mapped CEC gradient. The main problems reducing the predictive ability of the soil maps were insufficient spatial resolution and/or georeferencing errors combined with thematic inaccuracy and absence of the most relevant edaphic variables. Addressing these problems would provide better models of the edaphic environment for ecological studies in Amazonia.  相似文献   

3.
This paper revisits various hypotheses about oligarchic patterns in Amazonian tree communities put forward by Pitman et al. (2001) . Together, these hypotheses predict that most lowland sites in the Amazon are located within large patches of relatively homogeneous edaphic and other environmental conditions, where an oligarchy of common, frequent tree species accounts for a majority of trees. To assess the degree to which these hypotheses have been corroborated or refuted over the last ten years, we reviewed > 200 studies published since 2001. We found overwhelming support for the hypo thesis that large‐scale oligarchies of common and frequent species are a common feature of Amazonian tree communities. At least 22 studies have documented oligarchies in Amazonian woody plant communities to date, and no studies have looked for oligarchies as defined by Pitman et al. (2001) and failed to find them. We argue that six publications that offer critiques of the oligarchy hypothesis do not constitute valid tests. The other hypotheses in Pitman et al. (2001) – one regarding the specific oligarchic taxa that dominate forests near the eastern base of the Andes and one that attempts to explain why oligarchic species exist – are less well supported by the literature, in large part because they have not been subjected to many tests. We discuss links between these hypotheses and other well‐known patterns and hypotheses in ecology (the abundance–occupancy relationship, the Janzen–Connell hypothesis, the niche‐environment hypothesis, and the niche breadth hypothesis), and provide additional detail to facilitate rigorous tests in the future. The paper concludes by presenting remote sensing evidence that large patches of relatively homogeneous environmental conditions account for most of the upland forest landscape across Amazonian Peru.  相似文献   

4.
Question: Are soil properties and topographic variation related with palm (Arecaceae) species composition and distribution patterns? If so, are species distribution patterns consistent across sites? Location: 100–200 m a.s.l, non‐inundated Amazonian rainforest, NE Peru. Methods: One 0.65‐ha line transect divided into 5 m by 5 m subunits was inventoried for all palm individuals at each site. Soil samples were collected, and topography was measured. Results: A total of 56 palm taxa were recorded. Floristic similarity among transects clearly corresponded with similarity in soil cation content when species abundances were taken into account, but less so when only presence‐absence data were used. Taxon‐wise distribution analyses were done for the 37 most abundant palm taxa. Quite a few of these taxa proved not to be randomly distributed along the transects, but instead were clearly more abundant in some topographic positions than in others. However, the consistency of the distribution patterns across study sites proved to be rather low, and many of the palm taxa showed different distribution patterns at different sites. Conclusions: The ambiguity in distribution patterns across study sites may partly be due to the complexity of topography as a measure of ecological conditions, and the probability that it is related to the variation in different environmental variables at different sites.  相似文献   

5.
We documented the floristic composition of pteridophytes (ferns and fern allies) and Melastomataceae in Yasuní National Park, Amazonian Ecuador. Our main questions were: (1) Are the density of individuals, species richness, and/or species diversity (measured with Shannon's H′) of the two plant groups related to edaphic differences? and (2) How many of the pteridophyte and Melastomataceae species are non–randomly distributed in relation to a soil base content gradient within terra firme (non–inundated forest). To answer these questions, we sampled 27 line transects of 500 × 5 m distributed in an area of ca 20 × 25 km. The study area included a permanent 50 ha plot established to monitor forest dynamics; thus, our results also provide information on landscape–scale floristic variability to which results from within the plot can be compared. A total of 45,608 individuals and 140 species of pteridophytes, and 4893 individuals and 89 species of the Melastomataceae, were counted in the transects. Both with pteridophytes and with Melastomataceae, a clear negative correlation was found between the amount of extractable bases in the soil and the number of plant individuals encountered in a transect. With Melastomataceae, species richness and species diversity also were negatively correlated with soil base content, but with pteridophytes they were not. More than 50 percent of the common species of both pteridophytes and Melastomataceae were nonrandomly distributed along the soil cation content gradient within terra firme. We conclude that while the species richness patterns observed in one plant group are not indicative of similar patterns in other plant groups, it seems likely that a substantial (but unknown) proportion of species belonging to other plant groups will be found to show distribution patterns that reflect edaphic preferences within terra firme forests.  相似文献   

6.
Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments – sedimentary, crystalline, and inselberg –representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity.  相似文献   

7.
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.  相似文献   

8.
Pleistocene fragmentation of Amazon species' ranges   总被引:1,自引:0,他引:1  
Historical patterns of connection and isolation of the impressive biological diversity of the Amazon Basin have been the subject of extensive debate, based on evidence drawn from distributional patterns of endemic species, vegetation histories from palynological studies, and geological studies. We develop species-specific ecological niche models based on current occurrence patterns of 17 species of birds and woody plants, which we project onto modelled Pleistocene (Last Glacial Maximum) climatic patterns to reconstruct past potential distributions of each species. Forest species' distributions showed fragmentation at Last Glacial Maximum and these fragments were coincident spatially, whereas savanna species showed no clear trends. Our results suggest that past climate changes fragmented forest species' ranges within a matrix of uncertain composition.  相似文献   

9.
Niche differentiation with respect to habitat has been hypothesized to shape patterns of diversity and species distributions in plant communities. African forests have been reported to be relatively less diverse compared to highly diversed regions of the Amazonian or Southeast Asian forests, and might be expected to have less niche differentiation. We examined patterns of structural and floristic differences among five topographically defined habitats for 494 species with stems ≥1 cm dbh in a 50-ha plot in Korup National Park, Cameroon. In addition, we tested for species–habitat associations for 272 species (with more than 50 individuals in the plot) using Torus translation randomization tests. Tree density and basal area were lowest in areas with negative convexity, which contained streams or were inundated during rainy periods and highest in moist well-drained habitats. Species composition and diversity varied along the topographical gradient from low flat to ridge top habitats. The low depression and low flat habitats were characterized by high diversity and similar species composition, relative to slopes, high gullies and ridge tops. Sixty-three percent of the species evaluated showed significant positive associations with at least one of the five habitat types. The majority of associations were with low depressions (75 species) and the fewest with ridge tops (8 species). The large number of species–habitat associations and the pronounced contrast between low (valley) and elevated (ridgetop) habitats in the Korup plot shows that niche differentiation with respect to edaphic variables (e.g., soil moisture, nutrients) contributes to local scale tree species distributions and to the maintenance of diversity in African forests.  相似文献   

10.
Tropical non-self-supporting plants such as hemiepiphytes and nomadic vines are model organisms for disentangling biotic and environmental correlates which influence their occupancy patterns. We inventoried >4000 individuals from >3000 trees ranging from 1 to 200 cm diameter at breast height (DBH) in a northeastern Amazonian upland forest to address how tree (phorophyte) size, edaphic factors and recruitment strategy influence occupancy, diversity, and compositional patterns of two vascular non-self-supporting plant functional groups. Hemiepiphytes germinate on phorophytes prior to establishing soil connections, whereas nomadic vines initiate their life cycle on the forest floor and subsequently climb phorophytes for crown access, abandoning roots replaced by adventitious connections which may reach the ground. Our results show that larger phorophytes (≥30 cm DBH) supported more species for both hemiepiphytes and nomadic vines. However, nomadic vines' occupancy probabilities saturated faster at smaller stem sizes than that of hemiepiphytes indicating differential preferences for stem sizes among the two functional groups. For smaller phorophytes (<30 cm DBH), soil correlations were stronger with nomadic vines than hemiepiphytes, whereas no significant differences were detected among functional groups in relation to edaphic factors for larger (≥ 30 cm DBH) ones. Finally, a small core group of species showed disproportionately greater abundances among large phorophytes suggesting that autogenic processes differentially promote survivability. Such interactions among phorophyte size and edaphic factors may result from the contrasting ecological requirements of hemiepiphytes and nomadic vines at the recruitment stage, demonstrating the necessity for elaborate demographic-based studies to better understand these complex plant–plant interactions. Abstract in Spanish is available with online material  相似文献   

11.
Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis: Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation–soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.  相似文献   

12.
Anthony Joern 《Oecologia》1979,38(3):325-347
Summary Diets of grasshopper species from two arid grassland communities in Trans-Pecos, Texas, were determined by gut analysis. Species-specific food plant choice and niche breadths are presented for each of these species. As a group, grasshoppers range from monophagous to polyphagous feeders although most species fall in the oligophagous to polyphagous group. Phylogenetic constraints are evident such that gomphocerinae are primarily grass feeders while melanoplinae feed predominantly on forbs; the oedipodinae show less clearcut tendencies.Feeding patterns are remarkably constant from site to site and overall, community niche breadth distributions between sites do not differ greatly. Individual species tend to eat the same plant species at various sites and maintain similar niche breadths. Species with relatively specialized diets tend to feed on predictable plant species such as grasses and long-lived perrenial forbs.Grasshopper feeding patterns present some problems to the current theory of herbivore diet specialization since forb feeding melanoplines tend to be polyphagous (contrary to predictions). Life history patterns unrelated to tracking host plants may explain some aspects of diet breadth since diet selectivities are presumably adjusted according to the probability of finding suitable food plants.  相似文献   

13.
Several studies in lowland tropical rain forests have documented effects of local‐scale topographic variation on plant species distribution and abundance patterns. Few studies have compared the distribution patterns of more than one plant group, however, and even fewer have related these to measured physical and chemical soil characteristics. Here, we document such soil characteristics within a square 1‐ha plot in Amazonian Ecuador, and compare them to the distribution patterns of terrestrial pteridophytes, angiosperm ground herbs, and palms. Substantial variation in soil properties was found within the plot. The three plant groups showed highly correlated floristic patterns within the 1‐ha plot even after the effect of geographical distances had been taken into account. Mantel tests yielded significant correlations between edaphic patterns, as measured by distances in various soil and topographic characteristics, and floristic patterns. For all three plant groups, differences in elevation within the plot were highly correlated with floristic distances, and for terrestrial pteridophytes and palms, distances in soil calcium content and sand content were also important. Our results resembled those obtained at wider spatial scales with the same plant groups, which indicates that soil factors may play an important role for distribution and beta diversity of plants, even at the local scale.  相似文献   

14.
Aims The Inclusive Niche Hypothesis has not been validated for plants using ecophysiological performance. The few experiments have measured growth and competition but not the physiological response of plants. A metallophyte plant that hyperaccumulates aluminium (Al), Plantago almogravensis, showed a defined spatial distribution by occurring mostly on vegetation gaps associated with metalliferous areas (geochemical islands). This case was used to determine, in situ, whether the Inclusive Niche Hypothesis was suitable to explain the extent of the species realized niche.Methods The vegetation associated with P. almogravensis geochemical islands in the SW coast of Portugal was mapped. The biotic (neighbouring plants) and abiotic (edaphic) components of the niche were correlated with parameters of the plant's ecological and physiological performances (plant density and cover; leaf C and N concentration and isotopic composition; growth). The results were obtained using image analysis, abundance and morphological measures, isotopic signatures and chemical composition.Important findings The species showed better physiological performance where its ecological performance was lower due to trade-offs with environmental constraints. The species' realized niche was mostly limited by shrub competition and soil Al-toxicity. These limits contribute to explain the rarity status of the species: the species has a poor capacity to compete but, due to an enhanced Al-tolerance and Al-hyperaccumulator trait, has the ability to find refuge in geochemical islands that are too harsh for most other species. This work, based on ecophysiological field studies, provides support for the Inclusive Niche Hypothesis relating to plant species.  相似文献   

15.
We focused on land units as landscape characteristics and selected seven typical land units on a land catena comprising two areas of southern Mongolia. Hierarchical analysis was used to test the hypothesis that a land unit’s edaphic factors could explain the differences in vegetation responses to grazing. We established the survey sites at increasing distances from a livestock camp or water point within each land unit, then analysed patterns of change in floristic and functional compositions, vegetation volume and soil properties within each land unit to reveal differences in vegetation responses to grazing. We also examined the variations in floristic and functional compositions across land units to identify the edaphic factors that may underlie these differences. Changes in vegetation and soil properties at increasing distances from a camp or water point within each land unit were into three different patterns. Ordination techniques consistently indicated that land unit groups categorised using edaphic factors corresponded to those categorised using response patterns. Our study revealed that edaphic factors were responsible for the observed landscape-scale differences in vegetation responses to grazing in the study areas. In addition, the mechanisms underlying vegetation responses to grazing may have been primarily determined by edaphic factors.  相似文献   

16.
A floristic inventory of woody plants was carried out to analyse the relationships between floristic similarity and geographical distance, and to compare the effect of land use history on the floristic composition between sites. Three lowland and two submontane sites were studied in Madidi, Bolivia. In one site, there is evidence of an Inca ruin. A total of 877 species and 12,822 individuals of woody plants with a diameter at breast height ≥2.5 cm were recorded in 44 0.1–ha plots. Fisher’s Alpha index values were slightly higher for the lowlands than for the submontane. Floristic similarity was higher within sites than between sites as measured by both Sørensen and Steinhaus indexes. The fact that the 30 most important species per site (totalling 94 species) accounted for 61.7% of total individuals, support the hypothesis that Amazonian plant communities are dominated by a limited set of species, genera and families. On the other hand, 18 out of the 94 species were reported in a single site, suggesting that some species are patchy in distribution and may be environmentally determined. Both the oligarchy and environmental-determinism hypotheses can be complementary in order to understand floristic patterns of this region. The Ruins submontane site is floristically the most distinct, and past human disturbance is likely to be the main reason. Since species diversity (ranging from 53 to 122 species per plot) and density (ranging from 157 to 503 per plot) are highly variable in Madidi, to characterize the diversity of a site, it is necessary to quantify an average of 10 0.1-ha plots in a relatively small geographical area.  相似文献   

17.
Aims The Cape Peninsula is a small area (471 km 2) situated on the south-westernmost tip of the Core Cape Subregion (CCR) of South Africa. Within the Cape Peninsula, Fabaceae are the third most species-rich plant family (162 species) and they have the second highest number of endemic species after the Ericaceae. However, legumes are not the dominant taxa in the vegetation. They tend to show patchy distributions within the landscape and different species assemblages usually occupy particular niches at any given locality. The present study undertook to establish if edaphic factors influence legume species distribution in the Cape Peninsula and to determine the key indicator species for the different assemblages.Methods Soils from 27 legume sites, spanning all major geological substrates of the Cape Peninsula, were analysed for 31 chemical and physical properties. Legume species present at each site were recorded and a presence/absence matrix was generated. Cluster analysis and discriminant function analysis (DFA) were run to group the sites based on overall similarity in edaphic characteristics and to identify the soil parameters contributing towards discriminating the groups. Canonical correspondence analysis (CCA) was used to test for a correlation between legume species compositions and edaphic factors. The strength of the association between legume species and site groupings based on edaphic properties was assessed using indicator species analysis.Important findings Based on similarity in overall soil characteristics, the sites formed three clusters: one comprising sites of sandstone geology, one with dune sand sites and the third cluster comprising sites of both shale and granite geologies (hereafter referred to as soil types). The DFA confirmed the distinctness of these clusters and the CCA showed a significant correlation between legume species composition and edaphic factors. The key edaphic parameters were clay content, iron (Fe), potassium (K), sulphur (S) and zinc (Zn). These findings reveal that the Cape Peninsula is edaphically heterogeneous and edaphically distinct habitats contain discrete legume species assemblages that can be distinguished by unique indicator species. Furthermore, multiple soil parameters, rather than a single parameter, are involved. Therefore, edaphic factors play a significant role in driving the distribution of legume species in the Cape Peninsula and discrete legume species assemblages occupy distinct habitats.  相似文献   

18.
Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.  相似文献   

19.

Background and aims

Copper (Cu) rich soils derived from rocks of the Katangan Copperbelt in the south-eastern Democratic Republic of Congo (DRC) support a rich diversity of metallophytes including 550 heavy metal tolerant; 24 broad Cu soil endemic; and 33 strict Cu soil endemic plant species. The majority of the plant species occur on prominent Cu hills scattered along the copperbelt. Heavy metal mining on the Katangan Copperbelt has resulted in extensive degradation and destruction of the Cu hill ecosystems. As a result, approximately 80 % of the strict Cu endemic plant species are classified as threatened according to IUCN criteria and represent a conservation priority. Little is known about the soil Cu tolerance optimum of the Cu endemic plant species. The purpose of this study was to quantify the soil Cu concentration (Cu edaphic niche) of four Cu endemic plant species to inform soil propagation conditions and microhabitat site selection for planting of the species in Cu hill ecosystem restoration.

Methods

The soil Cu concentration tolerance of Cu endemic plant species was studied including Crotalaria cobalticola (CRCO); Gladiolus ledoctei (GLLE); Diplolophium marthozianum (DIMA); and Triumfetta welwitschii var. rogersii (TRWE-RO). The in situ natural habitat distributions of the Cu endemic plant species with respect to soil Cu concentration (Cu edaphic niche) was calculated by means of a generalised additive model. Additionally, the seedling emergence and growth of the four Cu endemic plant species in three soil Cu concentrations was tested ex situ and the results were compared to that of the natural habitat soil Cu concentration optimum (Cu edaphic niche).

Results

CRCO exhibited greater performance on the highest soil Cu concentration, consistent with its calculated Cu edaphic niche occurring at the highest soil Cu concentrations. In contrast, both DIMA and TRWE-RO exhibited greatest performance at the lowest soil Cu concentration, despite the calculated Cu edaphic niche occurring at moderate soil Cu concentrations. GLLE exhibited equal performances in the entire range of soil Cu concentrations.

Conclusions

These results suggest that CRCO evolved via the edaphic specialization model where it is most competitive in Cu hill habitat with the highest soil Cu concentration. In comparison, DIMA and TRWE-RO appear to have evolved via the endemism refuge model, which indicates that the species were excluded into (i.e., took refuge in) the lower plant competition Cu hill habitat due to their inability to effectively compete with higher plant competition on normal soils. The soil Cu edaphic niche determined for the four species will be useful in conservation activities including informing soil propagation conditions and microhabitat site selection for planting of the species in Cu hill ecosystem restoration.
  相似文献   

20.
AIM: Conservation and land-use planning require accurate maps of patterns in species composition and an understanding of the factors that control them. Substantial doubt exists, however, about the existence and determinants of large-area floristic divisions in Amazonia. Here we ask whether Amazonian forests are partitioned into broad-scale floristic units on the basis of geological formations and their edaphic properties. LOCATION: Western and central Amazonia. METHODS: We used Landsat imagery and Shuttle Radar Topography Mission (SRTM) digital elevation data to identify a possible floristic and geological discontinuity of over 300 km in northern Peru. We then used plant inventories and soil sampling to document changes in species composition and soil properties across this boundary. Data were obtained from 138 sites distributed along more than 450 km of road and river. On the basis of our findings, we used broad-scale Landsat and SRTM mosaics to identify similar patterns across western and central Amazonia. RESULTS: The discontinuity identified in Landsat and SRTM data corresponded to a 15-fold change in soil cation concentrations and an almost total change in plant species composition. This discontinuity appears to be caused by the widespread removal of cation-poor surface sediments by river incision to expose cation-rich sediments beneath. Examination of broad-scale Landsat and SRTM mosaics indicated that equivalent processes have generated a north-south discontinuity of over 1500 km in western Brazil. Due to similarities with our study area, we suggest that this discontinuity represents a chemical and ecological limit between western and central Amazonia. MAIN CONCLUSIONS: Our findings suggest that Amazonian forests are partitioned into large-area units on the basis of geological formations and their edaphic properties. The evolution of these units through geological time may provide a general mechanism for biotic diversification in Amazonia. These compositional units, moreover, may correspond to broad-scale functional units. The existence of large-area compositional and functional units would suggest that protected-area, carbon sequestration, and other land-use strategies in Amazonia be implemented on a region-by-region basis. The methods described here can be used to map these patterns, and thus enable effective conservation and management of Amazonian forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号