首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxytocin, a nonapeptide posterior pituitary hormone, which is known to increase glucose oxidation in fat cells like insulin, is shown here to stimulate pyruvate dehydrogenase activity in these cells. The process appears to involve the activation of preexisting molecules since there was no change in the total enzyme content after full activation. The effect of oxytocin, as well as of insulin, appears to be mediated by endogenous H2O2 formation, as evident from (i) the enhanced [14C]formate oxidation and its greater inhibition by 3-amino-1,2,4-triazole in the hormone-treated cells than in the control. This is a measure of the catalase:H2O2 complex, and the dose dependence of this response is found to be identical with that of glucose oxidation via the hexose monophosphate shunt pathway and of pyruvate dehydrogenase activity; and (ii) treatment of the cells with low concentration of exogenous H2O2 causes the activation of pyruvate dehydrogenase to the extent which is comparable with the effect of the hormones. The ED50 of oxytocin was 7 × 10?9m, whereas the ED50 of insulin was 5 × 10?11m. The reduced, inactive (SH) derivatives of the hormones had the same dose-response relationship, but considerably lower effect (10 to 20% of the native molecules of the hormones), indicating the significant role of the disulfide bridge(s) in eliciting these metabolic responses. The stimulation of PDH by oxytocin or insulin is found to be essentially independent of medium glucose which, however, can sustain the response apparently by recycling the intracellular oxidation-reduction state. However, unlike insulin, oxytocin fails to stimulate the rapid uptake of 3-O-[3H]methyl-d-glucose in these cells. The data illustrate that the major metabolic actions of insulin, viz., glucose utilization and lipogenesis, are shared by another heterologous polypeptide hormone, e.g., oxytocin, through a common effector, H2O2. It is suggested that (i) oxytocin may play a limited surrogate role for insulin in these cells; and (ii) H2O2 production may be the general basis of oxytocin's action.  相似文献   

2.
Insulin-dextran complexes have been prepared and their biological activities compared to that of native insulin. Complexes referred to as T-70 has a molecular weight of about 450 000, T-2000 being more than 2 million. Insulin-detran T-70 was stable and no release of free insulin from the complex was observed upon its incubation with adipose tissue. Insulin-dextran T-70 mimicked the effects of native insulin upon adipose tissue metabolism. It also lowered blood sugar. These effects necessitated, on an insulin molar basis, concentrations of the complex that were 10-times greater than those needed for native insulin. Maximal concentrations of insulin T-70 or native insulin elicited similar quantitative effects. This suggested that when the concentration of insulin-dextran T-70 was high enough, the complex occupied a sufficient number of receptor sites to produce maximal stimulation of the tissue. In contrast, insulin-dextran T-2000 was barely effective, indicating that, probably due to its size, it was unable to reach receptor sites. The size, stability and metabolic effects of insulin-dextran T-70 observed in this study give additional support to the concept that insulin action is probably mediated via a series of events initiated at the level of the plasma membrane of adipocytes.  相似文献   

3.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

4.
THE RELATIVE SIGNIFICANCE OF CO2-FIXING ENZYMES IN THE METABOLISM OF RAT BRAIN   总被引:10,自引:10,他引:0  
To evaluate the relative significance of CO2-fixing enzymes in the metabolism of rat brain, the subcellular distribution of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, NADP-isocitrate dehydrogenase and NADP-malate dehydrogenase, as well as the fixation of H14CO3? by the cytosol and the mitochondria was investigated. Pyruvate carboxylase and phosphoenol-pyruvate carboxykinase are mainly localized in the mitochondria whereas NADP-isocitrate dehydrogenase and NADP-malate dehydrogenase are present in both the cytosol and the mitochondria. In the presence of pyruvate rat brain mitochondria fixed H14CO3? at a rate of about 170 nmol/g of tissue/min whereas these organelles fixed negligible amounts of H14CO3? in the presence of α-ketoglutarate or phosphoenolpyruvate. Rat brain cortex slices fixed H14CO3? at a rate of about 7 nmol/g of tissue/min and it was increased by two-fold when pyruvate was added to the incubation medium. The carboxylation of α-ketoglutarate and pyruvate by the reversal of the cytosolic NADP-isocitrate dehydrogenase and NADP-malate dehydrogenase respectively was very low as compared to that by pyruvate carboxylase. The rate of carboxylation reaction of both NADP-isocitrate dehydrogenase and NADP-malate dehydrogenase was only about 1/10th of that of decarboxylation reaction of the same enzyme. It is suggested that under physiological conditions these two enzymes do not play a significant role in CO2-fixation in the brain. In rat brain cytosol, citrate is largely metabolized to α-ketoglutarate by a sequential action of aconitate hydratase and NADP-isocitrate dehydrogenase. The operation of the citrate-cleavage pathway in rat brain cytosol is demonstrated. The data show that among four CO2-fixing enzymes, pyruvate carboxylase, an anaplerotic enzyme, plays the major role in CO2-fixation in the brain.  相似文献   

5.
Two naturally occurring polyamines, spermine and spermidine, mimic the action of insulin on lipid and glucose metabolism in adipocytes. To evaluate the role of cell membranes in the action of polyamines, studies of [14C] spermine binding using an oil separation method were conducted in isolated rat adipocytes and adipose cell membranes. Spermine binding and dissociation in fat cells and fat cell membranes were rapid and complete within 3–6 min. Following a 30-min incubation of [14C] spermine with fat cell membranes, over 90% of bound [14C] spermine was dissociable while under similar conditions only 25% of bound [14C] spermine was dissociable in cells. The non-dissociable fractions in cells likely represented intracellular accumulation. Binding and stimulation of glucose oxidation were demonstrated at similar concentrations. Bound spermine was displaced by spermine, spermidine and 1,8-diaminooctane with greater efficacy than putrescine (a polyamine devoid of insulin-like properties) or insulin. Similarly, polyamines did not complete with insulin for binding to isolated adipocytes. It appears, therefore, that polyamines initiate their insulin-like effects by interacting with the cell membrane at sites which are common to biologically active polyamines and which are distinct from the insulin receptor.  相似文献   

6.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

7.
The effects of omission of Ca2+ and Mg2+ from the incubation medium on three aspects of insulin action in isolated fat cells have been investigated. In the (Ca2+ + Mg2+)-free incubation medium incorporation of L-[14C]leucine into fat cell protein was reduced in the absence of insulin. Insulin stimulated L-[14C]-leucine incorporation only in the presence of added CaCl2 or MgCl2. Incubation of the cells in the (Ca2+ + Mg2+)-free medium reduced but did not abolish the ability of adrenaline to stimulate lipolysis or the ability of insulin to inhibit the adrenaline-stimulated lipolysis. Specific binding of 125I-labelled insulin to the fat cells was reduced in the absence of Ca2+ and Mg2+ but was not abolished, even in the presence of EDTA. Ca2+ was routinely the most effective divalent cation in supporting these aspects of insulin action, but similar responses were obtained with Mg2+, Sr2+ and Ba2+.Since insulin still binds to the cells under conditions in which some of the cellular effects of the hormone are abolished, it is suggested that divalent cations may have a role, either direct or indirect, in the processes linking the insulin-insulin receptor complex to certain effector systems in the cells. It is tentatively suggested that this action occurs at the level of the fat cell plasma membrane.  相似文献   

8.
Soft tissue injury to one hindlimb of rats was used to test the response to trauma of metabolism in epididymal fat pads. Degradation of [1?14C] leucine was lower on day 2 after injury, but not on days 1 or 3, whether or not glucose or insulin were provided. Although trauma did not affect the basal rate of release of 14CO2, lactate or pyruvate from fat pads incubated with [U?14C] glucose, the stimulation by insulin of these processes was smaller in fat pads of 2 day traumatized than of normal animals. These results suggest that trauma due to injury may decrease the capacity for utilization of leucine and glucose by adipose tissue. Release of alanine, glutamine and glutamate by gat pads incubated with leucine was also lower on day 2. This decreased efflux could not be accounted for by changes in net protein breakdown or in pyruvate availability and probably reflected their reduced de novo synthesis due to the diminished release of nitrogen from leucine.  相似文献   

9.
Summary Palmitoyldl-carnitine inhibits14CO2 production from 1-[14C]-pyruvate and from 1-[14C]-alanine by mitochondria from rainbow trout liver. The inhibitory effect occurs in both respiratory states III and IV. Fixation of H14CO 3 into acid-stable products by intact mitochondria requires pyruvate and ATP and is inhibited by sodium arsenite. This inhibitory effect is completely abolished by acetyldl-carnitine. It is proposed that under these conditions, oxidation of palmitoyldl-carnitine results in inhibition of pyruvate dehydrogenase while oxidation of acetyldl-carnitine results in activation of pyruvate carboxylase in intact rainbow trout liver mitochondria.  相似文献   

10.
(1) In order to assess the possible role of 3′,5′-(cyclic)adenosine monophosphate (cAMP) in the control of glucose transport, the effect of the nucleotide or agents known to increase its intracellular concentration on sugar transport or 45Ca2+ washout were characterized in epididymal fat pads, free fat cells and soleus muscles of the rat. (2) When added to the incubation medium, cAMP (0.1–2.0 mM) stimulated 3-O-[14C]methylglucose washout from fat pads. This effect was abolished by cytochalasin B, and additive to that induced by submaximal (10–25 μU/ml), but not by supramaximal (10 mU/ml) concentrations of insulin. (3) cAMP (2 mM) stimulated the conversion of [U-14C]glucose into CO2 and triacylglycerols. This effect was additive to that of insulin (100 μU/ml). (4) ACTH, glucagon, adrenaline, noradrenaline and salbutamol, which are all known to increase the cAMP content of adipose tissue, stimulated the washout of 3-O-[14C]methylglucose and 45Ca2+ from preloaded fat pads. The fractional losses of the two isotopes were significantly correlated (P < 0.001, r = 0.73). (5) In free fat cells, adrenaline (10−6 M) and salbutamol (10−5 M) stimulated the uptake of 3-O-[14C]methylglucose, and salbutamol (10−5 M) did not interfere with the stimulating effect of insulin (25 μU/ml) on sugar uptake. (6) In rat soleus muscles, adrenaline and salbutamol produced a dose-dependent stimulation of the washout of 3-O-[14C]methylglucose and 45Ca2+. The effect of adrenaline on sugar efflux was abolished by propranolol. (7) It is concluded that the activation of the glucose transport system by insulin is unlikely to be mediated by a drop in the cellular concentration of cAMP. An increase in cAMP brought about by β-adrenoceptor agonists or lipolytic hormones may induce a mobilization of calcium ions from cellular pools into the cytoplasm, which in turn leads to the activation of the glucose transport system demonstrated in the present as well as in several earlier studies.  相似文献   

11.
A substance capable of stimulating the activities of pyruvate dehydrogenase and low Km cyclic AMP phosphodiesterase was prepared from H4-II-EC3′ hepatoma cells by acid extraction and partially purified by molecular exclusion chromatography. The material thus prepared by gel chromatography was found to stimulate the activities of these enzymes in a concentration-dependent manner. The amount or activity of the pyruvate dehydrogenase stimulating factor was increased in cells which had been treated with physiological concentrations of insulin (0.2 mU/ml). Increasing the concentration of insulin increased the amount or activity of the factor generated. High concentrations of insulin did not cause a reversal of the effects of insulin. The stimulation of pyruvate dehydrogenase activity by the factor was eliminated when sodium fluoride (75 mm) was present in the enzyme assay, implying that activation was mediated by the pyruvate dehydrogenase phosphatase. The enzyme-stimulating factor isolated from hepatoma cells shares a number of important characteristics with the putative second messenger of insulin prepared from other cell types: (1) it is heat and acid stable, (2) it has a similar apparent molecular weight, (3) it is generated in an insulin-dependent manner, (4) it stimulates the activity of pyruvate dehydrogenase by a fluoride-sensitive mechanism, and (5) it elutes from the anion-exchange resin AG 1-X8 at an ionic strength of 0.4 m. These findings suggest that the stimulator of pyruvate dehydrogenase and of low Km cyclic AMP phosphodiesterase isolated from hepatoma cells has chemical properties identical with those of the putative second messenger of insulin action isolated from a number of other insulin-sensitive tissues.  相似文献   

12.
The levels of sarcosine dehydrogenase and acid-nonextractable flavin in the inner matrix of mitochondria of rat liver are decreased in animals treated with triiodothyronine and are elevated in the mitochondria obtained from thyroidectomized animals. Administration of triiodothyronine does not affect the electron-transfer flavoprotein associated with the sarcosine dehydrogenase or the relative amounts of soluble and membrane-bound proteins of the mitochondria. In phosphate-washed mitochondria from either the controls or the triiodothyronine-treated rats, the O2 uptake equals the total of the [14C]formaldehyde and [β-14C]serine isolated as reaction products of the sarcosine-[14C]methyl group. In contrast to its restraint of sarcosine or choline oxidation in preparations capable of oxidative phosphorylation, ADP does not inhibit the oxidation of these substrates in mitochondria of rats given triiodothyronine.  相似文献   

13.
(1) In order to assess the possible role of 3′,5′-(cyclic)adenosine monophosphate (cAMP) in the control of glucose transport, the effect of the nucleotide or agents known to increase its intracellular concentration on sugar transport or 45Ca2+ washout were characterized in epididymal fat pads, free fat cells and soleus muscles of the rat. (2) When added to the incubation medium, cAMP (0.1–2.0 mM) stimulated 3-O-[14C]methylglucose washout from fat pads. This effect was abolished by cytochalasin B, and additive to that induced by submaximal (10–25 μU/ml), but not by supramaximal (10 mU/ml) concentrations of insulin. (3) cAMP (2 mM) stimulated the conversion of [U-14C]glucose into CO2 and triacylglycerols. This effect was additive to that of insulin (100 μU/ml). (4) ACTH, glucagon, adrenaline, noradrenaline and salbutamol, which are all known to increase the cAMP content of adipose tissue, stimulated the washout of 3-O-[14C]methylglucose and 45Ca2+ from preloaded fat pads. The fractional losses of the two isotopes were significantly correlated (P < 0.001, r = 0.73). (5) In free fat cells, adrenaline (10?6 M) and salbutamol (10?5 M) stimulated the uptake of 3-O-[14C]methylglucose, and salbutamol (10?5 M) did not interfere with the stimulating effect of insulin (25 μU/ml) on sugar uptake. (6) In rat soleus muscles, adrenaline and salbutamol produced a dose-dependent stimulation of the washout of 3-O-[14C]methylglucose and 45Ca2+. The effect of adrenaline on sugar efflux was abolished by propranolol. (7) It is concluded that the activation of the glucose transport system by insulin is unlikely to be mediated by a drop in the cellular concentration of cAMP. An increase in cAMP brought about by β-adrenoceptor agonists or lipolytic hormones may induce a mobilization of calcium ions from cellular pools into the cytoplasm, which in turn leads to the activation of the glucose transport system demonstrated in the present as well as in several earlier studies.  相似文献   

14.
A combined foliar application of ethephon (2-chloroethylphosphonic acid) at 0.8 kg/ha and daminozide (butanedioic acid mono (2,2 dimethylhydrazide) at 3.2 kg/ha inhibited the vegetative growth of Black Valentine bean (Phaseolus vulgaris L.) without the leaf chlorosis and necrosis caused by ethephon alone. This antagonistic interaction was further evaluated by examining the effect of ethephon and daminozide on respiration and lipid synthesis of isolated leaf cells. Ethephon (1.0 mM) promoted14CO2 evolution from cells incubated with14C-glucose for 14 h by approximately 75%. Characterization of this response with Black Valentine bean mitochondria indicated that the observed stimulation could not be attributed to the existence of a major cyanide insensitive pathway or the possibility of ethephon acting as an uncoupler, which supports the view that ethephon (or ethylene) acts in the cytosol rather than in mitochondria. Daminozide at 30.0 and 60.0 mM inhibited14CO2 evolution of isolated cells by 30 and 70%, respectively. Ethephon in combination with daminozide (1.0+60 mM) resulted in a 32% inhibition of respiration. Daminozide (60.0 mM) inhibited the incorporation of14C-glucose into chloroform-methanol soluble products by 47%, but did not affect the incorporation of14C-acetate. The results suggest that daminozide may reduce or overcome any stimulatory effect of ethephon on respiration and support an active inhibitory site for daminozide in mitochondria.  相似文献   

15.
In islets from adult rats injected with streptozotocin during the neonatal period, both a nonmetabolized analog of L-leucine and 3-phenylpyruvate augmented 14CO2 output from islets either prelabeled with L-[U-14C]glutamine or exposed to D-[2-14C]glucose and D-[6-14C]glucose in a manner qualitatively comparable to that found in islets from control rats. The islets of diabetic rats differed, however, from those of control rats by their unresponsiveness to both the L-leucine analog and a high concentration of D-glucose in terms of increasing 3HOH generation from [2-3H]glycerol, an impaired sparing action of the hexose upon 14CO2 output from islets prelabeled with [U-14C]palmitate, and, most importantly, by a decreased rate of D-[2-14C]glucose and D-[6-14C]glucose oxidation when either incubated at a high concentration of the hexose (16.7 mM) or stimulated by nonglucidic nutrient secretagogues at a low concentration of D-glucose (2.8 mM). In islet homogenates, the activity of glyceraldehyde phosphate dehydrogenase, glutamate decarboxylase, and NADP-malate dehydrogenase was lower in diabetic than control islets. Such was not the case for glutamatealanine transaminase, glutamate-aspartate transaminase, or glutamate dehydrogenase. The neonatal injection of streptozotocin thus affected, in the adult rats, the activity of several islet enzymes. Nevertheless, the metabolic data suggest that an impaired circulation in the glycerol phosphate shuttle, as observed in response to stimulation of the islets by either a high concentration of D-glucose or nonglucidic nutrient secretagogues, represents an essential determinant of the preferential impairment of glucose-induced insulin release in this model of non-insulin-dependent diabetes.  相似文献   

16.
Addition of 5 μg/ml concanavalin A to isolated white fat cells in the presence of 1 % albumin maximally stimulated the conversion of d-[1-14C]glucose to CO2, glyceride-glycerol and fatty acids over a 1 h incubation period; as little as 1 μg/ml agglutinin increased fat cell glucose oxidation more than 2-fold. Labelled CO2 production in the presence of concanavalin A was linear for at least 90 min and was inhibited by 40 mM α-methyl-d-glucoside which had little effect on basal or insulin-stimulated glucose oxidation. The effect of a submaximal concentration of the agglutinin was additive to that of submaximal but not maximal concentrations of insulin.Concanavalin A caused agglutination of fat cells which could be readily detected by light microscopy. Digestion of fat cells with 0.5 mg/ml trypsin for 15 min did not affect subsequent agglutination and inhibited the increased glucose oxidation due to concanavalin A by less than 30%. Thus the action of concanavalin A was much less sensitive to trypsinization of fat cells than insulin since trypsin under the above conditions completely abolished the effect of insulin. An anti-blood group A agglutinin from Phaseolus lunatus and Lens culanaris agglutinin also markedly stimulatedfat cell glucose conversion to CO2. Agglutinin-stimulated glucose metabolism was inhibited by phloretin. This binding of several types of specific plant lectins to fat cell membrane glycoprotein(s) and/or glycolipid(s) apparently initiates events which results in increased glucose transport.  相似文献   

17.
1. Although citrate is known to activate purified preparations of acetyl-CoA carboxylase, it had no stimulatory effect on the incorporation of [14C]acetate into long-chain fatty acids in a whole homogenate of rat liver (S0.7) under conditions in which the activity of acetyl-CoA carboxylase was rate-limiting for fatty acid synthesis. 2. The rate of incorporation of acetyl carbon into fatty acids was estimated in S0.7 preparations incubated with [14C]acetate, by measuring the specific radioactivity of the acetyl carbon of acetyl-CoA and the incorporation of 14C into fatty acids. These estimates were compared with estimates of acetyl-CoA carboxylase activity in the S0.7 preparation obtained by direct assay in conditions in which the enzyme was in the fully activated state. 3. In the absence of citrate, incorporation of acetyl carbon into fatty acids was about 75% of the value expected if the acetyl-CoA carboxylase in the S0.7 preparation were in the fully activated state. 4. Incorporation of acetyl carbon into fatty acids in the S0.7 preparation was stimulated by citrate, but the effect was many times less than the stimulation of [14C]acetate incorporation by citrate in particle-free preparations. 5. When the mitochondria and microsomes were removed from the S0.7 preparation, [14C]acetate incorporation into fatty acids fell to a negligible value and the preparation became highly sensitive to stimulation by citrate. 6. It is suggested that in the presence of mitochondria and microsomes, and in the intact liver cell, the degree of activation of acetyl-CoA carboxylase is such that citrate activation may not be of physiological significance.  相似文献   

18.
Summary In rat pancreatic islets, a rise in extracellular D-glucose concentration is known to cause a greater increase in the oxidation of D-[6-14C]glucose than utilization of D-[5-3H]glucose. In the present study, such a preferential stimulation of acetyl residue oxidation relative to glycolytic flux was mimicked by nutrient secretagogues such as 2-aminobicyclo[2,2,1]heptane-2-carboxylate, 3-phenylpyruvate, L-leucine, 2-ketoisocaproate, D-fructose and ketone bodies. The preferential stimulation of D-[6-14C]glucose oxidation by these nutrients was observed at all hexose concentrations (0.5, 6.0 and 16.7 mM), coincided with an unaltered rate of D-[3,4-14C]glucose oxidation, was impaired in the absence of extracellular Ca2+, and failed to be affected by NH4 +. Although the ratio between D-[6-14C]glucose oxidation and, D-[5-3H]glucose utilization in islets exposed to other nutrient secretagogues could be affected by factors such as isotopic dilution and mitochondrial redox state, the present data afford strong support to the view that the preferential stimulation of oxidative events in the Krebs cycle of nutrient-stimulated islets is linked to the activation of key mitochondrial dehydrogenases, e.g. 2-ketoglutarate dehydrogenase. The latter activation might result from the mitochondrial accumulation of Ca2+, as attributable not solely to stimulation of Ca2+ inflow into the islet cells but also to an increase in ATP availability.  相似文献   

19.
Succinate dehydrogenase activity was measured in rat pancreatic islet homogenates incubated in the presence of [1,4-14C]succinate, the reaction velocity being judged through the generation of 14CO2 in the auxiliary reactions catalysed by pig heart fumarase and chicken liver NADP-malate dehydrogenase. In the presence of 1·0 mM succinate, the reaction velocity averaged 5·53 ± 0·44 pmol min?1 μg?1 islet protein. The Km for succinate was close to 0·4 mM and the enzymic activity was restricted to mitochondria. These kinetic results indicate that, under the present experimental conditions, the activity of succinate dehydrogenase does not vastly exceed that of either NAD-isocitrate dehydrogenase or the 2-ketoglutarate dehydrogenase complex, at least when the latter enzymes are activated by ADP and/or Ca2+. Nevertheless, the activity of succinate dehydrogenase is sufficient to account for the increase in O2 uptake evoked in intact islets by the monomethyl ester of succinic acid. It could become a rate-limiting step of the Krebs cycle in models of B-cell dysfunction.  相似文献   

20.
The (Na+, K+)ATPase transport system in resting 3T3 Swiss mouse fibroblasts is rapidly activated by prostaglandin F2α and insulin, which initiate DNA synthesis in these cells. Prostaglandin F2α, but not insulin, promotes a rapid increase in Pi uptake which is partially coupled to the Na+ pump. This rapid activation of both transport systems occurs by a mechanism which does not require fluctuation of cyclic AMP levels or new protein synthesis. A subsequent protein synthesis-dependent increase in Pi uptake is stimulated by insulin and prostaglandin F2α. These results suggest that different types of control of membrane transport occur during growth stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号