首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Tumors are dependent on oncogenic proteins for their maintenance and survival. The ideal cancer therapy would include drugs that specifically target these proteins. Many such proteins function through interfaces that can be difficult to target effectively with small molecules. However, recent advances in cell-permeable peptide technology, improving cellular penetration and stability, raise the possibility that specific peptide interference of oncogenic proteins could be successfully translated to the clinic. Several active anti-tumor peptides were recently described. For example, a stable peptide inhibitor of the Hsp90 ATP-binding pocket killed a wide range of tumors in vitro and in vivo, and a peptide inhibitor of the BCL6 oncoprotein was active in B-cell lymphomas; both peptides functioned without toxicity to normal tissues.  相似文献   

3.
The loss of neurons is a hallmark of neurodegenerative disorders and evidence suggests that this occurs through an apoptotic mechanism. Following an insult, neuronal cells activate signal transduction pathways that lead to cell death and the establishment of the pathological state. The mechanisms underlying the cell-death response involve protein kinases, which phosphorylate many substrates and culminate in changes in gene expression. Traditionally, attempts at blocking such signaling targeted the phosphorylation of the substrates. However, preventing the interaction between two proteins using specific peptides might block the function of key mediators in signaling cascades. A cell-permeable peptide designed specifically to inhibit c-Jun N-terminal kinase action proved successful in in vivo models of neuronal degeneration following ischemia. Here, the recent findings that highlight the potential of this approach for therapeutic application are reviewed.  相似文献   

4.
The neural cell adhesion molecules (N-CAMs) play an important role in mediating cell–cell interactions in the nervous system. Different isoforms of these membrane proteins are involved in the formation of the neuronal network and in the dynamic phases of neuronal plasticity.

We studied the early stages of the pseudo neuronal differentiation of PC12 cells induced by a class of small acidic peptides capable of modulating gene expression in these cells.

The data presented here indicate that peptides with specific sequences induce an increase in N-CAM mRNA expression and protein translocation to the plasma membrane to a comparable degree as NGF.  相似文献   


5.
The Bcl-2 family includes a growing number of proteins that play an essential role in regulating apoptosis or programmed cell death. Members of this family display diverse biological functions and can either inhibit or promote cell death signals. Abnormal gene expression of some Bcl-2 family members such as Bcl-2 that inhibits apoptosis is found in a wide variety of human cancers and contributes to the resistance of tumor cells to conventional therapies through interfering with the cell death signals triggered by chemotherapeutic agents. As such, elucidating the structure-function and mechanism of the Bcl-2 family is important for understanding some of the fundamental principles underling the death and survival of cells and of practical value for developing potential therapeutics to control apoptosis in pathological processes. Synthetic peptides derived from homologous or heterogeneous domains in Bcl-2 family proteins that might mediate different biological activities provide simplified and experimentally more tractable models as compared to their full-length counterparts to dissect and analyze the complex functional roles of these proteins. Non-peptidic molecules identified from random screening of natural products or designed by rational structure-based techniques can mimic the effect of synthetic peptides by targeting similar active sites on a Bcl-2 family member protein. In this article, we review recent progress in using these synthetic peptides and non-peptidic mimic molecules to obtain information about the structure and function of Bcl-2 family proteins and discuss their application in modulating and studying intracellular apoptotic signaling.  相似文献   

6.
It is well-established that heat shock proteins (HSPs)-peptides complexes elicit antitumor responses in prophylactic and therapeutic immunization protocols. HSPs such as gp96 and Hsp70 have been demonstrated to undergo receptor-mediated uptake by APCs with subsequent representation of the HSP-associated peptides to MHC class I molecules on APCs, facilitating efficient cross-presentation. On the contrary, despite its abundant expression among HSPs in the cytosol, the role of Hsp90 for the cross-presentation remains unknown. We show here that exogenous Hsp90-peptide complexes can gain access to the MHC class I presentation pathway and cause cross-presentation by bone marrow-derived dendritic cells. Interestingly, this presentation is TAP independent, and followed chloroquine, leupeptin-sensitive, as well as cathepsin S-dependent endosomal pathways. In addition, we show that Hsp90-chaperoned precursor peptides are processed and transferred onto MHC class I molecules in the endosomal compartment. Furthermore, we demonstrate that immunization with Hsp90-peptide complexes induce Ag-specific CD8(+) T cell responses and strong antitumor immunity in vivo. These findings have significant implications for the design of T cell-based cancer immunotherapy.  相似文献   

7.
A major concern in cancer therapy is resistance of tumors such as glioblastoma to current treatment protocols. Here, we report that transfer of the gene encoding second mitochondria-derived activator of caspase (Smac) or Smac peptides sensitized various tumor cells in vitro and malignant glioma cells in vivo for apoptosis induced by death-receptor ligation or cytotoxic drugs. Expression of a cytosolic active form of Smac or cell-permeable Smac peptides bypassed the Bcl-2 block, which prevented the release of Smac from mitochondria, and also sensitized resistant neuroblastoma or melanoma cells and patient-derived primary neuroblastoma cells ex vivo. Most importantly, Smac peptides strongly enhanced the antitumor activity of Apo-2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in an intracranial malignant glioma xenograft model in vivo. Complete eradication of established tumors and survival of mice was only achieved upon combined treatment with Smac peptides and Apo2L/TRAIL without detectable toxicity to normal brain tissue. Thus, Smac agonists are promising candidates for cancer therapy by potentiating cytotoxic therapies.  相似文献   

8.
As stem cells are rare and difficult to study in vivo in adults, the use of classical models of regeneration to address fundamental aspects of the stem cell biology is emerging. Planarian regeneration, which is based upon totipotent stem cells present in the adult--the so-called neoblasts--provides a unique opportunity to study in vivo the molecular program that defines a stem cell. The choice of a stem cell to self-renew or differentiate involves regulatory molecules that also operate as translational repressors, such as members of PUF proteins. In this study, we identified a homologue of the Drosophila PUF gene Pumilio (DjPum) in the planarian Dugesia japonica, with an expression pattern preferentially restricted to neoblasts. Through RNA interference (RNAi), we demonstrate that gene silencing of DjPum dramatically reduces the number of neoblasts, thus supporting the intriguing hypothesis that stem cell maintenance may be an ancestral function of PUF proteins.  相似文献   

9.
Antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) have been considered to have a beneficial effect against various diseases mediated by reactive oxygen species (ROS). Although a variety of modified recombinant antioxidant enzymes have been generated to protect against the oxidative stresses, the lack of their transduction ability into cells resulted in limited ability to detoxify intracellular ROS. To render the catalase enzyme capable of detoxifying intracellular ROS when added extracellularly, cell-permeable recombinant catalase proteins were generated. A human liver catalase gene was cloned and fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) and arginine-rich peptides (RRRRRRRRR) in a bacterial expression vector to produce genetic in-frame Tat-CAT and 9Arg-CAT fusion proteins, respectively. The expressed and purified fusion proteins can be transduced into mammalian cells (HeLa and PC12 cells) in a time- and dose-dependent manner when added exogenously in culture medium, and transduced fusion proteins were enzymatically active and stable for 60 h. When exposed to H(2)O(2), the viability of HeLa cells transduced with Tat-CAT or 9Arg-CAT fusion proteins was significantly increased. In combination with transduced SOD, transduced catalase also resulted in a cooperative increase in cell viability when the cells were treated with paraquat, an intracellular antioxide anion generator. We then evaluated the ability of the catalase fusion proteins to transduce into animal skin. This analysis showed that Tat-CAT and 9Arg-CAT fusion proteins efficiently penetrated the epidermis as well as the dermis of the subcutaneous layer when sprayed on animal skin, as judged by immunohistochemistry and specific enzyme activities. These results suggest that Tat-CAT and 9Arg-CAT fusion proteins can be used in protein therapy for various disorders related to this antioxidant enzyme.  相似文献   

10.
The availability of label-free data derived from yeast cells (based on the summed intensity of the three strongest, isoform-specific peptides) permitted a preliminary assessment of protein abundances for glycolytic proteins. Following this analysis, we demonstrate successful application of the QconCAT technology, which uses recombinant DNA techniques to generate artificial concatamers of large numbers of internal standard peptides, to the quantification of enzymes of the glycolysis pathway in the yeast Saccharomyces cerevisiae. A QconCAT of 88 kDa (59 tryptic peptides) corresponding to 27 isoenzymes was designed and built to encode two or three analyte peptides per protein, and after stable isotope labeling of the standard in vivo, protein levels were determined by LC-MS, using ultra high performance liquid chromatography-coupled mass spectrometry. We were able to determine absolute protein concentrations between 14,000 and 10 million molecules/cell. Issues such as efficiency of extraction and completeness of proteolysis are addressed, as well as generic factors such as optimal quantotypic peptide selection and expression. In addition, the same proteins were quantified by intensity-based label-free analysis, and both sets of data were compared with other quantification methods.  相似文献   

11.
Extralysosomal proteolysis by multicatalytic complexes such as the 26S proteasome produces large amounts of peptides in the cytosol, mitochondria and nuclei of eukaryotic cells, and there is increasing evidence that the resulting free intracellular peptides can modulate specific protein interactions. The demonstration that free peptides added to the intracellular milieu can regulate cellular functions mediated by protein interactions suggests new putative roles for these molecules in gene regulation, metabolism, cell signaling and protein targeting. Such interactions frequently involve specific consensus amino acid sequences that can be predicted based on similarities in domain composition. We have recently developed a new strategy for identifying novel natural peptides, the sequences of which correspond to fragments of intracellular proteins and contain putative post-translational modification sites. In this review, we examine the evidence that intracellular peptides released by proteasomes may be involved in regulating protein interactions. In particular, the role of endopeptidase 24.15 (thimet oligopeptidase; EC 3.4.24.15) is discussed in detail as this enzyme has been implicated in intracellular peptide metabolism in vivo in concert with the 26S proteasome.  相似文献   

12.
Protein transduction is based on the ability of certain peptides, designated as cell penetrating peptides (CPPs), to intracellularly deliver cargo molecules, such as peptides and proteins. In combination with site specific recombination, CPP-mediated delivery of recombinases enables a precise and highly efficient control of gene expression in cultured cells and mice. Herein, we provide detailed protocols for engineering and purification of a cell-permeant FLP recombinase protein. Two examples describe the use of cell permeant FLP for excising prespecified fragments from transgenes expressed in fibroblasts and mouse embryonic stem cells. A third example describes the combined use of cell-permeant Cre and FLP recombinases to reversibly induce transgenes in embryonic stem cells. We anticipate that the protocols described herein will be widely used for various genetic interventions addressing complex biological questions.  相似文献   

13.
Abstract: Growth factors are peptides that exert different activities in the CNS, supporting the survival of different cell populations and playing an important role in the maintenance of cell homeostasis. Much evidence has suggested that these molecules can protect neurons from degeneration induced by mechanical injury or excitotoxic stimuli. Different factors can contribute to the regulation of neurotrophic factor expression in the brain. Such mechanisms may therefore be important in the manipulation of the levels of these peptides in specific brain areas as a therapeutic intervention in acute and chronic neurodegenerative diseases. We have used a primary culture of rat cortical astrocytes to investigate the regulation of basic fibroblast growth factor (bFGF) gene expression in comparison with other neurotrophic molecules. Our results indicate that the glucocorticoid analogue dexamethasone markedly elevates bFGF mRNA levels but reduces the expression of nerve growth factor. The induction of bFGF was transient, as it peaked after 6 h and returned to basal levels within 24 h and was not blocked by coincubation of cycloheximide, thus indicating that it did not require de novo protein synthesis. This effect was also observed in vivo, as systemic injection of dexamethasone (1 or 10 mg/kg) produced a significant increase in the amount of bFGF mRNA in cerebral cortex and hippocampus. The effect we describe can contribute to the regulation of bFGF expression in the brain and may be important in relation to the protective effect exerted by this growth factor in different models of neuronal injury.  相似文献   

14.
Endocrine epithelial cells, targets of the autoimmune response in thyroid and other organ-specific autoimmune diseases, express HLA class II (HLA-II) molecules that are presumably involved in the maintenance and regulation of the in situ autoimmune response. HLA-II molecules thus expressed by thyroid cells have the "compact" conformation and are therefore expected to stably bind autologous peptides. Using a new approach to study in situ T cell responses without the characterization of self-reactive T cells and their specificity, we have identified natural HLA-DR-associated peptides in autoimmune organs that will allow finding peptide-specific T cells in situ. This study reports a first analysis of HLA-DR natural ligands from ex vivo Graves' disease-affected thyroid tissue. Using mass spectrometry, we identified 162 autologous peptides from HLA-DR-expressing cells, including thyroid follicular cells, with some corresponding to predominant molecules of the thyroid colloid. Most interestingly, eight of the peptides were derived from a major autoantigen, thyroglobulin. In vitro binding identified HLA-DR3 as the allele to which one of these peptides likely associates in vivo. Computer modeling and bioinformatics analysis suggested other HLA-DR alleles for binding of other thyroglobulin peptides. Our data demonstrate that although the HLA-DR-associated peptide pool in autoimmune tissue mostly belongs to abundant ubiquitous proteins, peptides from autoantigens are also associated to HLA-DR in vivo and therefore may well be involved in the maintenance and the regulation of the autoimmune response.  相似文献   

15.
RNA molecules play important and diverse regulatory roles in the cell by virtue of their interaction with other nucleic acids, proteins and small molecules. Inspired by this natural versatility, researchers have engineered RNA molecules with new biological functions. In the last two years efforts in synthetic biology have produced novel, synthetic RNA components capable of regulating gene expression in vivo largely in bacteria and yeast, setting the stage for scalable and programmable cellular behavior. Immediate challenges for this emerging field include determining how computational and directed-evolution techniques can be implemented to increase the complexity of engineered RNA systems, as well as determining how such systems can be broadly extended to mammalian systems. Further challenges include designing RNA molecules to be sensors of intracellular and environmental stimuli, probes to explore the behavior of biological networks and components of engineered cellular control systems.  相似文献   

16.
Structural studies of full-length membrane proteins have been hindered by their hydrophobicity and low expression in a variety of systems. However, a simplifying aspect of membrane protein folding is that individual transmembrane segments or membrane protein fragments have been observed to represent independent folding domains, and as such, can facilitate the study of packing interactions between TM helices, and the collection of structural information regarding membrane proteins. This review focuses on two categories of techniques--total peptide synthesis and bacterial expression--that can each be optimized for preparation of transmembrane protein segments. First, synthesis of hydrophobic transmembrane peptides that are N- and/or C-tagged with solubilizing residues such as lysine can improve manipulation of the transmembrane core in a variety of biophysical experiments. In this context, we describe general protocol considerations during the synthesis, cleavage, and purification stages of these peptides to identify appropriate parameters that combine to improve yields of hydrophobic peptides. Second, bacterial expression of membrane protein fragments is a useful tool for producing large quantities of hydrophobic protein segments. Targeting protein expression within Escherichia coli can facilitate purification, while attaching the hydrophobic construct to a hydrophilic fusion protein can amplify expression. We show that adapting protein constructs to comply with expression host specifications, in concert with thorough exploration of expression conditions such as the type of media used for expression, temperature, and cell strain, can significantly improve protein yields.  相似文献   

17.
Cell permeable carrier peptides are currently of interest for their potential to improve the delivery of bioactive molecules into cells and to specific cellular compartments. We have investigated the activity of a derivative of the antiandrogen drug, bicalutamide, attached to the cell-permeable carrier peptide penetratin(R). We have used both disulfide (labile) and thioether (nonlabile) linkages to attach the bicalutamide derivative to the peptide in order to assess whether one type of chemistry has advantages over the other. In addition we have added a nuclear localization sequence (NLS) to the carrier peptide to investigate whether localization of the drug to the nucleus of the cell affects the activity of the drug. Biotin-labeled peptides were used to demonstrate that the carrier peptide is rapidly accumulated inside cultured cells, and that the incorporation of an NLS in the sequence results in its nuclear targeting. The bicalutamide derivative linked to carrier peptides via a disulfide-linkage exerted no greater antiproliferative effect in LNCaP cells, than the bicalutamide derivative alone. The bicalutamide derivative linked to the carrier peptide by a non-labile thioether linkage showed a similar activity profile. When the construct includes a nuclear targeting sequence, however, a markedly increased antiproliferative effect was observed. This study has thus shown that the activity of bicalutamide may be enhanced by the nonlabile attachment of a cell-permeable and nuclear-targeted peptide, which has implications for the development of novel antiandrogens for the treatment of prostate cancer.  相似文献   

18.
Many biological processes rely on protein-protein interactions. These processes include signal transduction, cell cycle regulation, gene regulation, and viral assembly and replication. Moreover, many proteins and enzymes manifest their function as oligomers. We describe here an efficient means to sift through large combinatorial libraries and identify molecules that block the interaction of target proteins in vivo. The power of this approach is demonstrated by the identification of nine-residue peptides from a combinatorial library that inhibit the intracellular dimerization of HIV-1 protease. Fewer than 1 in 106 peptides do so. In vitro biochemical analyses of one such peptide demonstrate that it acts by dissociating HIV-1 protease into monomers, which are inactive catalysts. Inhibition is enhanced further by dimerizing the peptide. This approach enables the facile identification of new molecules that control cellular processes.  相似文献   

19.
Many important signaling proteins require the posttranslational addition of fatty acid chains for their proper subcellular localization and function. One such modification is the addition of palmitoyl moieties by enzymes known as palmitoyl acyltransferases (PATs). Substrates for PATs include C-terminally farnesylated proteins, such as H- and N-Ras, as well as N-terminally myristoylated proteins, such as many Src-related tyrosine kinases. The molecular and biochemical characterization of PATs has been hindered by difficulties in developing effective methods for the analysis of PAT activity. In this study, we describe the use of cell-permeable, fluorescently labeled lipidated peptides that mimic the PAT recognition domains of farnesylated and myristoylated proteins. These PAT substrate mimetics are accumulated by SKOV3 cells in a saturable and time-dependent manner. Although both peptides are rapidly palmitoylated, the SKOV3 cells have a greater capacity to palmitoylate the myristoylated peptide than the farnesylated peptide. Confocal microscopy indicated that the palmitoylated peptides colocalized with Golgi and plasma membrane markers, whereas the corresponding nonpalmitoylatable peptides accumulated in the Golgi but did not traffic to the plasma membrane. Overall, these studies indicate that the lipidated peptides provide useful cellular probes for quantitative and compartmentalization studies of protein palmitoylation in intact cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号