共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipid droplets (LDs) are ubiquitous but poorly understood neutral-lipid-rich eukaryotic organelles that may participate in functions as diverse as lipid homeostasis, membrane traffic, and signaling . We report that infection with the obligate intracellular pathogen Chlamydia trachomatis, the causative agent of trachoma and many sexually transmitted diseases , leads to the accumulation of neutral-lipid-rich structures with features of LDs at the cytoplasmic surface of the bacteria-containing vacuole. To identify bacterial factors that target these organelles, we screened a collection of yeast strains expressing GFP-tagged chlamydial ORFs and identified several proteins with tropism for eukaryotic LDs. We determined that three of these LD-associated (Lda) proteins are translocated into the mammalian host and associate with neutral-lipid-rich structures. Furthermore, the stability of one Lda protein is dependent on binding to LDs, and pharmacological inhibition of LD formation negatively impacted chlamydial replication. These results suggest that C. trachomatis targets LDs to enhance its survival and replication in infected cells. The co-option of mammalian LD function by a pathogenic bacterium represents a novel mechanism of eukaryotic organelle subversion and provides unique research opportunities to explore the function of these understudied organelles. 相似文献
2.
Mojica S Huot Creasy H Daugherty S Read TD Kim T Kaltenboeck B Bavoil P Myers GS 《Journal of bacteriology》2011,193(14):3690
Chlamydia pecorum is an obligate intracellular bacterial pathogen that causes diverse disease in a wide variety of economically important mammals. We report the finished complete genome sequence of C. pecorum E58, the type strain for the species. 相似文献
3.
4.
Cell death and inflammation during infection with the obligate intracellular pathogen, Chlamydia 总被引:2,自引:0,他引:2
Infections by Chlamydia are followed by a strong inflammatory response, which is necessary to eliminate the infection, but at the same time is responsible for the pathology of infection. Resistance of infected cells against apoptosis induced by external ligands, together with the effects of IFNgamma secreted during infection, would be expected to contribute to persistence of infection. Secretion of TNFalpha plays an important role during clearance of the chlamydiae, but also triggers apoptosis of uninfected cells in infected tissues. Apoptosis of infected host-cells towards the end of the infection cycle is thought to participate in the release of chlamydiae from infected cells and propagation of the infection. Dysregulation of the apoptotic program during infection leads to a less efficient infection, but paradoxically, results in a higher inflammatory response and more severe pathology. 相似文献
5.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that can cause sexually transmitted and ocular diseases in humans. Its biphasic developmental cycle and ability to evade host-cell defences suggest that the organism responds to external signals, but its genome encodes few recognized signalling pathways. One such pathway is predicted to function by a partner switching mechanism, in which key protein interactions are controlled by serine phosphorylation. From genome analysis this mechanism is both ancient and widespread among eubacteria, but it has been experimentally characterized in only a few. C. trachomatis has no system of genetic exchange, so here an in vitro approach was used to establish the activities and interactions of the inferred partner switching components: the RsbW switch protein/kinase and its RsbV antagonists. The C. trachomatis genome encodes two RsbV paralogs, RsbV(1) and RsbV(2). We found that each RsbV protein was specifically phosphorylated by RsbW, and tandem mass spectrometry located the phosphoryl group on a conserved serine residue. Mutant RsbV(1) and RsbV(2) proteins in which this conserved serine was changed to alanine could activate the yeast two-hybrid system when paired with RsbW, whereas mutant proteins bearing a charged aspartate failed to activate. From this we infer that the phosphorylation state of RsbV(1) and RsbV(2) controls their interaction with RsbW in vivo. This experimental demonstration that the core of the partner switching mechanism is conserved in C. trachomatis indicates that its basic features are maintained over a large evolutionary span. Although the molecular target of the C. trachomatis switch remains to be identified, based on the predicted properties of its input phosphatases we propose that the pathway controls an important aspect of the developmental cycle within the host, in response to signals external to the C. trachomatis cytoplasmic membrane. 相似文献
6.
Plasmodiophora brassicae is an intracellular pathogen that infects plants in the Brassicaceae family. Although an important pathogen group, information on the genomic makeup of the plasmodiophorids is almost completely lacking. We performed suppression subtractive hybridization (SSH) between RNA from P. brassicae-infected and uninfected Arabidopsis tissue, then screened 232 clones from the resulting SSH library. In addition, we used an oligo-capping procedure to screen 305 full-length cDNA clones from the infected tissue. A total of 76 new P. brassicae gene sequences were identified, the majority of which were extended to full length at the 5' end by the use of RACE amplification. Many of the unisequences were predicted to contain signal peptides for ER translocation. Although we located few sequences in total, these markedly increase available data from the plasmodiophorids, and provide new opportunities to examine plasmodiophorid biology. Our study also points towards the best methods for future plasmodiophorid gene discovery. 相似文献
7.
8.
Genetic analysis of Rickettsia prowazekii has been hindered by the lack of selectable markers and efficient mechanisms for generating rickettsial gene knockouts. We have addressed these problems by adapting a gene that codes for rifampin resistance for expression in R. prowazekii and by incorporating this selection into a transposon mutagenesis system suitable for generating rickettsial gene knockouts. The arr-2 gene codes for an enzyme that ADP-ribosylates rifampin, thereby destroying its antibacterial activity. Based on the published sequence, this gene was synthesized by PCR with overlapping primers that contained rickettsial codon usage base changes. This R. prowazekii-adapted arr-2 gene (Rparr-2) was placed downstream of the strong rickettsial rpsL promoter (rpsL(P)), and the entire construct was inserted into the Epicentre EZ::TN transposome system. A purified transposon containing rpsL(P)-Rparr-2 was combined with transposase, and the resulting DNA-protein complex (transposome) was electroporated into competent rickettsiae. Following selection with rifampin, rickettsiae with transposon insertions in the genome were identified by PCR and Southern blotting and the insertion sites were determined by rescue cloning and inverse PCR. Multiple insertions into widely spaced areas of the R. prowazekii genome were identified. Three insertions were identified within gene coding sequences. Transposomes provide a mechanism for generating random insertional mutations in R. prowazekii, thereby identifying nonessential rickettsial genes. 相似文献
9.
Bunk S Susnea I Rupp J Summersgill JT Maass M Stegmann W Schrattenholz A Wendel A Przybylski M Hermann C 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(8):5490-5498
The controversial discussion about the role of Chlamydia pneumoniae in atherosclerosis cannot be solved without a reliable diagnosis that allows discrimination between past and persistent infections. Using a proteomic approach and immunoblotting with human sera, we identified 31 major C. pneumoniae Ags originating from 27 different C. pneumoniae proteins. More than half of the proteins represent Chlamydia Ags not described previously. Using a comparative analysis of spot reactivity Pmp6, OMP2, GroEL, DnaK, RpoA, EF-Tu, as well as CpB0704 and CpB0837, were found to be immunodominant. The comparison of Ab-response patterns of sera from subjects with and without evidence for persisting C. pneumoniae, determined by multiple PCR analysis of PBMC and vasculatory samples, resulted in differential reactivity for 12 proteins, which is not reflected by reactivity of the sera in the microimmunofluorescence test, the current gold standard for serodiagnosis. Although reactivity of sera from PCR-positive donors was increased toward RpoA, MOMP, YscC, Pmp10, PorB, Pmp21, GroEL, and Cpaf, the reactivity toward YscL, Rho, LCrE, and CpB0837 was decreased, reflecting the altered protein expression of persisting C. pneumoniae in vitro. Our data provide the first evidence of a unique Ab-response pattern associated with persistent C. pneumoniae infections, which is a prerequisite for the serological determination of persistently infected patients. 相似文献
10.
Balakrishnan A Patel B Sieber SA Chen D Pachikara N Zhong G Cravatt BF Fan H 《The Journal of biological chemistry》2006,281(24):16691-16699
Chlamydia trachomatis is an obligate intracellular bacterium responsible for a number of human diseases. The mechanism underlying the intracellular parasitology of Chlamydiae remains poorly understood. In searching for host factors required for chlamydial infection, we discovered that C. trachomatis growth was effectively inhibited with GM6001 and TAPI-0, two compounds known as specific inhibitors of matrix metalloproteases. The inhibition was independent of chlamydial entry of the cell, suggesting that the loss of extracellular metalloprotease activities of the host cell is unlikely to be the mechanism for the growth suppression. Nucleotide sequences of candidate metalloprotease genes remained unchanged in a chlamydial variant designated GR10, which had been selected for resistance to the inhibitors. Nevertheless, GR10 displayed a single base mutation in the presumable promoter region of the gene for peptide deformylase (PDF), a metal-dependent enzyme that removes the N-formyl group from newly synthesized bacterial proteins. The mutation correlated with an increased PDF expression level and resistance to actinonin, a known PDF inhibitor with antibacterial activity, as compared with the parental strain. Recombinant chlamydial PDF was covalently labeled with a hydroxamate-based molecular probe designated AspR1, which was developed for the detection of metalloproteases. The AspR1 labeling of the chlamydial PDF became significantly less efficient in the presence of excessive amounts of GM6001 and TAPI-0. Finally, the PDF enzyme activity was efficiently inhibited with GM6001 and TAPI-0. Taken together, our results suggest that the metalloprotease inhibitors suppress chlamydial growth by targeting the bacterial PDF. These findings have important biochemical and medical implications. 相似文献
11.
Kuzyk MA Burian J Thornton JC Kay WW 《Journal of molecular microbiology and biotechnology》2001,3(1):83-93
No effective recombinant vaccines are currently available for any rickettsial diseases. In this regard the first non-ribosomal DNA sequences from the obligate intracellular pathogen Piscirickettsia salmonis are presented. Genomic DNA isolated from Percoll density gradient purified P. salmonis, was used to construct an expression library in lambda ZAP II. In the absence of preexisting DNA sequence, rabbit polyclonal antiserum raised against P. salmonis, with a bias toward P. salmonis surface antigens, was used to identify immunoreactive clones. Catabolite repression of the lac promoter was required to obtain a stable clone of a 4,983 bp insert in Escherichia coli due to insert toxicity exerted by the accompanying radA open reading frame (ORF). DNA sequence analysis of the insert revealed 1 partial and 4 intact predicted ORF's. A 486 bp ORF, ospA, encoded a 17 kDa antigenic outer surface protein (OspA) with 62% amino acid sequence homology to the genus common 17 kDa outer membrane lipoprotein of Rickettsia prowazekii, previously thought confined to members of the genus Rickettsia. Palmitate incorporation demonstrated that OspA is posttranslationally lipidated in E. coli, albeit poorly expressed as a lipoprotein even after replacement of the signal sequence with the signal sequence from lpp (Braun lipoprotein) or the rickettsial 17 kDa homologue. To enhance expression, ospA was optimized for codon usage in E. coli by PCR synthesis. Expression of ospA was ultimately improved (approximately 13% of total protein) with a truncated variant lacking a signal sequence. High level expression (approximately 42% tot. prot.) was attained as an N-terminal fusion protein with the fusion product recovered as inclusion bodies in E. coli BL21. Expression of OspA in P. salmonis was confirmed by immunoblot analysis using polyclonal antibodies generated against a synthetic peptide of OspA (110-129) and a strong antibody response against OspA was detected in convalescent sera from coho salmon (Oncorhynchus kisutch). 相似文献
12.
O'Connell CM Ionova IA Quayle AJ Visintin A Ingalls RR 《The Journal of biological chemistry》2006,281(3):1652-1659
Chlamydia trachomatis is an obligate intracellular gram-negative pathogen and the etiologic agent of significant ocular and genital tract diseases. Chlamydiae primarily infect epithelial cells, and the inflammatory response of these cells to the infection directs both the innate and adaptive immune response. This study focused on determining the cellular immune receptors involved in the early events following infection with the L2 serovar of C. trachomatis.We found that dominant negative MyD88 inhibited interleukin-8 (IL-8) secretion during a productive infection with chlamydia. Furthermore, expression of Toll-like receptor (TLR)-2 was required for IL-8 secretion from infected cells, whereas the effect of TLR4/MD-2 expression was minimal. Cell activation was dependent on infection with live, replicating bacteria, because infection with UV-irradiated bacteria and treatment of infected cells with chloramphenicol, but not ampicillin, abrogated the induction of IL-8 secretion. Finally, we show that both TLR2 and MyD88 co-localize with the intracellular chlamydial inclusion, suggesting that TLR2 is actively engaged in signaling from this intracellular location. These data support the role of TLR2 in the host response to infection with C. trachomatis. Our data further demonstrate that TLR2 and the adaptor MyD88 are specifically recruited to the bacterial or inclusion membrane during a productive infection with chlamydia and provide the first evidence that intracellular TLR2 is responsible for signal transduction during infection with an intracellular bacterium. 相似文献
13.
Genetic recombinants that resulted from lateral gene transfer (LGT) have been detected in sexually transmitted disease isolates of Chlamydia trachomatis, but a mechanism for LGT in C. trachomatis has not been described. We describe here a system that readily detects C. trachomatis LGT in vitro and that may facilitate discovery of its mechanisms. Host cells were simultaneously infected in the absence of antibiotics with an ofloxacin-resistant mutant and a second mutant that was resistant to lincomycin, trimethoprim, or rifampin. Selection for doubly resistant C. trachomatis isolates in the progeny detected apparent recombinant frequencies of 10(-4) to 10(-3), approximately 10(4) times more frequent than doubly resistant spontaneous mutants in progeny from uniparental control infections. Polyclonal doubly resistant populations and clones isolated from them in the absence of antibiotics had the specific resistance-conferring mutations present in the parental mutants; absence of the corresponding normal nucleotides indicated that they had been replaced by homologous recombination. These results eliminate spontaneous mutation, between-strain complementation, and heterotypic resistance as general explanations of multiply resistant C. trachomatis that originated in mixed infections in our experiments and demonstrate genetic stability of the recombinants. The kind of LGT we observed might be useful for creating new strains for functional studies by creating new alleles or combinations of alleles of polymorphic loci and might also disseminate antibiotic resistance genes in vivo. The apparent absence of phages and conjugative plasmids in C. trachomatis suggests that the LGT may have occurred by means of natural DNA transformation. Therefore, the experimental system may have implications for genetically altering C. trachomatis by means of DNA transfer. 相似文献
14.
In an ultrastructural study of the hepatopancreas of Porcellio scaber, an obligate intracellular parasite, Chlamydia, was noted in the epithelial cells. Although the infection was found to extend the entire length of the hepatopancreas, it was most extensive in the glandular region. Indirect immunofluorescence testing revealed no cross-reactivity with either lymphogranuloma venereum or psittacosis antisera. 相似文献
15.
Multiple Chlamydia pneumoniae antigens prime CD8+ Tc1 responses that inhibit intracellular growth of this vacuolar pathogen 总被引:4,自引:0,他引:4
Wizel B Starcher BC Samten B Chroneos Z Barnes PF Dzuris J Higashimoto Y Appella E Sette A 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(5):2524-2535
CD8(+) T cells play an essential role in immunity to Chlamydia pneumoniae (Cpn). However, the target Ags recognized by Cpn-specific CD8(+) T cells have not been identified, and the mechanisms by which this T cell subset contributes to protection remain unknown. In this work we demonstrate that Cpn infection primes a pathogen-specific CD8(+) T cell response in mice. Eighteen H-2(b) binding peptides representing sequences from 12 Cpn Ags sensitized target cells for MHC class I-restricted lysis by CD8(+) CTL generated from the spleens and lungs of infected mice. Peptide-specific IFN-gamma-secreting CD8(+) T cells were present in local and systemic compartments after primary infection, and these cells expanded after pathogen re-exposure. CD8(+) T cell lines to the 18 Cpn epitope-bearing peptides were cytotoxic, displayed a memory phenotype, and secreted IFN-gamma and TNF-alpha, but not IL-4. These CTL lines lysed Cpn-infected macrophages, and the lytic activity was inhibited by brefeldin A, indicating endogenous processing of CTL Ags. Finally, Cpn peptide-specific CD8(+) CTL suppressed chlamydial growth in vitro by direct lysis of infected cells and by secretion of IFN-gamma and other soluble factors. These studies provide information on the mechanisms by which CD8(+) CTL protect against Cpn, furnish the tools to investigate their possible role in immunopathology, and lay the foundation for future work to develop vaccines against acute and chronic Cpn infections. 相似文献
16.
The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates 总被引:3,自引:1,他引:2
Using we11-characterized mutant host cell lines, deficient in specific enzymes of energy and nucleotide metabolism, we addressed numerous questions regarding nucleotide metabolism in the obligate intracellular bacterium Chlamydia trachomatis. The results presented indicate that C. trachomatis: (i) does not absolutely depend on mitochondrial generated ATP for survival; (ii) does have a significant draw on host-cell NTP pools but does not have a detrimental effect on the ability of the host cell to maintain its energy charge; (iii) lacks the ability to synthesize purine and pyrimidine nucleotides de novo; (iv) is not capable of interconverting purine nucleotides; and (v) possesses the pyrimidine metabolic-pathway enzymes CTP synthetase and deoxycytidine nucleotide deaminase. In total our results indicate that C. trachomatis is auxotrophic for host-cell ATP, GTP and UTP. In contrast, CTP can be obtained from the host cell or it can be synthesized from UTP by the parasite. 相似文献
17.
Hsia R Ohayon H Gounon P Dautry-Varsat A Bavoil PM 《Microbes and infection / Institut Pasteur》2000,2(7):761-772
The infectious cycle of phiCPG1, a bacteriophage that infects the obligate intracellular pathogen, Chlamydia psittaci strain Guinea Pig Inclusion Conjunctivitis, was observed using transmission electron microscopy of phage-hyperinfected, Chlamydia-infected HeLa cells. Phage attachment to extracellular, metabolically dormant, infectious elementary bodies and cointernalisation are demonstrated. Following entry, phage infection takes place as soon as elementary bodies differentiate into metabolically active reticulate bodies. Phage-infected bacteria follow an altered developmental path whereby cell division is inhibited, producing abnormally large reticulate bodies, termed maxi-reticulate bodies, which do not mature to elementary bodies. These forms eventually lyse late in the chlamydial developmental cycle, releasing abundant phage progeny in the inclusion and, upon lysis of the inclusion membrane, into the cytosol of the host cell. Structural integrity of the hyperinfected HeLa cell is markedly compromised at late stages. Released phage particles attach avidly to the outer leaflet of the outer membranes of lysed and unlysed Chlamydiae at different stages of development, suggesting the presence of specific phage receptors in the outer membrane uniformly during the chlamydial developmental cycle. A mechanism for phage infection is proposed, whereby phage gains access to replicating chlamydiae by attaching to the infectious elementary body, subsequently subverting the chlamydial developmental cycle to its own replicative needs. The implications of phage infection in the context of chlamydial infection and disease are discussed. 相似文献
18.
19.
A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid 下载免费PDF全文
Jutta Ludwig‐Müller Sabine Jülke Kathleen Geiß Franziska Richter Axel Mithöfer Ivana Šola Gordana Rusak Sandi Keenan Simon Bulman 《Molecular Plant Pathology》2015,16(4):349-364
The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae‐infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids. 相似文献
20.
Piscirickettsia salmonis is an obligate intracellular bacterial pathogen of salmonid fish and the etiological agent of the aggressive disease salmonid rickettsial syndrome. Today, this disease, also known as piscirickettsiosis, is the cause of high mortality in net pen-reared salmonids in southern Chile. Although the bacteria can be grown in tissue culture cells, genetic analysis of the organism has been hindered because of the difficulty in obtaining P. salmonis DNA free from contaminating host cell DNA. In this report, we describe a novel procedure to purify in vitro-grown bacteria with iodixanol as the substrate to run differential centrifugation gradients which, combined with DNase I digestion, yield enough pure bacteria to do DNA analysis. The efficiency of the purification procedure relies on two main issues: semiquantitative synchrony of the P. salmonis-infected Chinook salmon embryo (CHSE-214) tissue culture cells and low osmolarity of iodixanol to better resolve bacteria from the membranous structures of the host cell. This method resulted in the isolation of intact piscirickettsia organisms and removed salmon and mitochondrial DNA effectively, with only 1.0% contamination with the latter. 相似文献