首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, cancer predisposition, and increased cellular sensitivity to DNA-cross-linking agents. The products of seven of the nine identified FA genes participate in a protein complex required for monoubiquitination of the FANCD2 protein. Direct interaction of the FANCE protein with both fellow FA complex component FANCC and the downstream FANCD2 protein has been observed in the yeast two-hybrid system. Here, we demonstrate the ability of FANCE to mediate the interaction between FANCC and FANCD2 in the yeast three-hybrid system and confirm the FANCE-mediated association of FANCC with FANCD2 in human cells. A yeast two-hybrid system-based screen was devised to identify randomly mutagenized FANCE proteins capable of interaction with FANCC but not with FANCD2. Exogenous expression of these mutants in an FA-E cell line and subsequent evaluation of FANCD2 monoubiquitination and DNA cross-linker sensitivity indicated a critical role for the FANCE/FANCD2 interaction in maintaining FA pathway integrity. Three-hybrid experiments also demonstrated the ability of FANCE to mediate the interaction between FA core complex components FANCC and FANCF, indicating an additional role for FANCE in complex assembly. Thus, FANCE is shown to be a key mediator of protein interactions both in the architecture of the FA protein complex and in the connection of complex components to the putative downstream targets of complex activity.  相似文献   

2.
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disease with bone marrow failure and predisposition to cancer as major features, often accompanied by developmental anomalies. The cells of patients with FA are hypersensitive to DNA cross-linking agents in terms of cell survival and chromosomal breakage. Of the eight complementation groups (FA-A to FA-H) distinguished thus far by cell fusion studies, the genes for three-FANCA, FANCC, and FANCG-have been identified, and the FANCD gene has been localized to chromosome 3p22-26. We report here the use of homozygosity mapping and genetic linkage analysis to map a fifth distinct genetic locus for FA. DNA from three families was assigned to group FA-E by cell fusion and complementation analysis and was then used to localize the FANCE gene to chromosome 6p21-22 in an 18.2-cM region flanked by markers D6S422 and D6S1610. This study shows that data from even a small number of families can be successfully used to map a gene for a genetically heterogeneous disorder.  相似文献   

3.
Fanconi anemia (FA) is an autosomal recessive disorder with diverse clinical symptoms and extensive genetic heterogeneity. Of eight FA genes that have been implicated on the basis of complementation studies, four have been identified and two have been mapped to different loci; the status of the genes supposed to be defective in groups B and H is uncertain. Here we present evidence indicating that the patient who has been the sole representative of the eighth complementation group (FA-H) in fact belongs to group FA-A. Previous exclusion from group A was apparently based on phenotypic reversion to wild-type rather than on genuine complementation in fusion hybrids. To avoid the pitfall of reversion, future assignment of patients with FA to new complementation groups should conform with more-stringent criteria. A new group should be based on at least two patients with FA whose cell lines are excluded from all known groups and that fail to complement each other in fusion hybrids, or, if only one such cell line were available, on a new complementing gene that carries pathogenic mutations in this cell line. On the basis of these criteria, the current number of complementation groups in FA is seven.  相似文献   

4.
The Fanconi anemia (FA) protein FANCE is an essential component of the nuclear FA core complex, which is required for monoubiquitination of the downstream target FANCD2, an important step in the FA pathway of DNA cross-link repair. FANCE is predominantly localized in the nucleus and acts as a molecular bridge between the FA core complex and FANCD2, through direct binding of both FANCC and FANCD2. At present, it is poorly understood how the nuclear accumulation of FANCE is regulated and therefore we investigated the nuclear localization of this FA protein. We found that FANCE has a strong tendency to localize in the nucleus, since the addition of a nuclear export signal does not interfere with the nuclear localization of FANCE. We also demonstrate that the nuclear accumulation of FANCE does not rely solely on its nuclear localization signal motifs, but also on FANCC. The other FA proteins are not involved in the nuclear accumulation of FANCE, indicating a tight relationship between FANCC and FANCE, as suggested from their direct interaction. Finally, we show that the region of FANCE interacting with FANCC appears to be different from the region involved in binding FANCD2. This strengthens the idea that FANCE recruits FANCD2 to the core complex, without interfering with the binding of FANCC.  相似文献   

5.
The eleven Fanconi anemia (FA) proteins cooperate in a novel pathway required for the repair of DNA cross-links. Eight of the FA proteins (A, B, C, E, F, G, L, and M) form a core enzyme complex, required for the monoubiquitination of FANCD2 and the assembly of FANCD2 nuclear foci. Here, we show that, in response to DNA damage, Chk1 directly phosphorylates the FANCE subunit of the FA core complex on two conserved sites (threonine 346 and serine 374). Phosphorylated FANCE assembles in nuclear foci and colocalizes with FANCD2. A nonphosphorylated mutant form of FANCE (FANCE-T346A/S374A), when expressed in a FANCE-deficient cell line, allows FANCD2 monoubiquitination, FANCD2 foci assembly, and normal S-phase progression. However, the mutant FANCE protein fails to complement the mitomycin C hypersensitivity of the transfected cells. Taken together, these results elucidate a novel role of Chk1 in the regulation of the FA/BRCA pathway and in DNA cross-link repair. Chk1-mediated phosphorylation of FANCE is required for a function independent of FANCD2 monoubiquitination.  相似文献   

6.
FANCE: the link between Fanconi anaemia complex assembly and activity   总被引:16,自引:0,他引:16  
The Fanconi anaemia (FA) nuclear complex (composed of the FA proteins A, C, G and F) is essential for protection against chromosome breakage. It activates the downstream protein FANCD2 by monoubiquitylation; this then forges an association with the BRCA1 protein at sites of DNA damage. Here we show that the recently identified FANCE protein is part of this nuclear complex, binding both FANCC and FANCD2. Indeed, FANCE is required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. Disease-associated FANCC mutants do not bind to FANCE, cannot accumulate in the nucleus and are unable to prevent chromosome breakage.  相似文献   

7.
Fanconi anemia (FA) is an autosomal recessive chromosomal breakage disorder with diverse clinical symptoms including progressive bone marrow failure and increased cancer risk. FA cells are hypersensitive to crosslinking agents, which has been exploited to assess genetic heterogeneity through complementation analysis. Five complementation groups (FA-A through FA-E) have so far been distinguished among the first 20 FA patients analyzed. Complementation groups in FA are likely to represent distinct disease genes, two of which (FAC and FAA) have been cloned. Following the identification of the first FA-E patient, additional patients were identified whose cell lines complemented groups A-D. To assess their possible assignment to the E group, we introduced selection markers into the original FA-E cell line and analyzed fusion hybrids with three cell lines classified as non-ABCD. All hybrids were complemented for cross-linker sensitivity, indicating nonidentity with group E. We then marked the three non-ABCDE cell lines and examined all possible hybrid combinations for complementation, which indicated that each individual cell line represented a separate complementation group. These results thus define three new groups, FA-F, FA-G, and FA-H, providing evidence for a minimum of eight distinct FA genes.  相似文献   

8.
Positional cloning of a novel Fanconi anemia gene, FANCD2   总被引:31,自引:0,他引:31  
Fanconi anemia (FA) is a genetic disease with birth defects, bone marrow failure, and cancer susceptibility. To date, genes for five of the seven known complementation groups have been cloned. Complementation group D is heterogeneous, consisting of two distinct genes, FANCD1 and FANCD2. Here we report the positional cloning of FANCD2. The gene consists of 44 exons, encodes a novel 1451 amino acid nuclear protein, and has two protein isoforms. Similar to other FA proteins, the FANCD2 protein has no known functional domains, but unlike other known FA genes, FANCD2 is highly conserved in A. thaliana, C. elegans, and Drosophila. Retroviral transduction of the cloned FANCD2 cDNA into FA-D2 cells resulted in functional complementation of MMC sensitivity.  相似文献   

9.
Fanconi Anaemia (FA) is a cancer predisposition disorder characterized by spontaneous chromosome breakage and high cellular sensitivity to genotoxic agents. In response to DNA damage, a multi-subunit assembly of FA proteins, the FA core complex, monoubiquitinates the downstream FANCD2 protein. The FANCE protein plays an essential role in the FA process of DNA repair as the FANCD2-binding component of the FA core complex. Here we report a crystallographic and biological study of human FANCE. The first structure of a FA protein reveals the presence of a repeated helical motif that provides a template for the structural rationalization of other proteins defective in Fanconi Anaemia. The portion of FANCE defined by our crystallographic analysis is sufficient for interaction with FANCD2, yielding structural information into the mode of FANCD2 recruitment to the FA core complex. Disease-associated mutations disrupt the FANCE–FANCD2 interaction, providing structural insight into the molecular mechanisms of FA pathogenesis.  相似文献   

10.
Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair.  相似文献   

11.
Fanconi anemia (FA) is a complex disease involving nine identified and two unidentified loci that define a network essential for maintaining genomic stability. To test the hypothesis that the FA network is conserved in vertebrate genomes, we cloned and sequenced zebrafish (Danio rerio) cDNAs and/or genomic BAC clones orthologous to all nine cloned FA genes (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL), and identified orthologs in the genome database for the pufferfish Tetraodon nigroviridis. Genomic organization of exons and introns was nearly identical between zebrafish and human for all genes examined. Hydrophobicity plots revealed conservation of FA protein structure. Evolutionarily conserved regions identified functionally important domains, since many amino acid residues mutated in human disease alleles or shown to be critical in targeted mutagenesis studies are identical in zebrafish and human. Comparative genomic analysis demonstrated conserved syntenies for all FA genes. We conclude that the FA gene network has remained intact since the last common ancestor of zebrafish and human lineages. The application of powerful genetic, cellular, and embryological methodologies make zebrafish a useful model for discovering FA gene functions, identifying new genes in the network, and identifying therapeutic compounds.  相似文献   

12.
Fanconi anemia (FA) is one of several genetic diseases with characteristic cellular hypersensitivity to DNA crosslinking agents which suggest that FA proteins may function as part of DNA repair processes. At the clinical level, FA is characterized by bone marrow failure that affects children at an early age. The clinical phenotype is heterogeneous and includes various congenital malformations as well as cancer predisposition. FA patients are distributed into eight complementation groups suggesting a complex molecular pathway. Three of the eight possible FA genes have been cloned, although their function(s) have not been identified. FA cells are highly sensitive to DNA crosslinking agents (mitomycin C (MMC) and diepoxybutane), with some variability between cell lines. Sensitivity to monofunctional alkylating agents has been reported in some cases, although these studies were performed with genetically unclassified FA cells. To further analyse and characterize the newly identified FA complementation groups, we tested their sensitivity to UV radiation, monofunctional and bifunctional alkylating agents and to the X-ray mimetic drug bleomycin. We found that FA complementation groups D to H show increased sensitivity to the X-ray mimetic drug bleomycin. Furthermore, the single known FA-H cell line shows increased sensitivity to ethylethane sulfonate (EMS), methylmethane sulfonate (MMS) in addition to the characteristic sensitivity to crosslinking agents, suggesting a broader spectrum of drug sensitivities in FA cells.  相似文献   

13.
Fanconi anaemia (FA) comprises a group of autosomal recessive disorders resulting from mutations in one of eight genes (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF and FANCG). Although caused by relatively simple mutations, the disease shows a complex phenotype, with a variety of features including developmental abnormalities and ultimately severe anaemia and/or leukemia leading to death in the mid teens. Since 1992 all but two of the genes have been identified, and molecular analysis of their products has revealed a complex mode of action. Many of the proteins form a nuclear multisubunit complex that appears to be involved in the repair of double-strand DNA breaks. Additionally, at least one of the proteins, FANCC, influences apoptotic pathways in response to oxidative damage. Further analysis of the FANC proteins will provide vital information on normal cell responses to damage and allow therapeutic strategies to be developed that will hopefully supplant bone marrow transplantation.  相似文献   

14.
Fanconi's anemia (FA) is a rare genetic disorder affecting children at an early age; patients suffer from progressive bone marrow failure and, in many cases, from congenital malformations. As cells from FA patients have an increased sensitivity to DNA-crosslinking agents, FA has been included among the group of DNA repair disorders. However, identification of a specific DNA repair defect in FA has not been firmly established. None the less, this cellular phenotype has allowed the classification of FA patients into eight complementation groups defining eight possible FA genes. Two of these genes have now been cloned and, although they have raised more questions than they have answered, are facilitating the identification of cellular processes implicated in the pathophysiology of FA, and the design of new therapies.  相似文献   

15.
Wang X  D'Andrea AD 《DNA Repair》2004,3(8-9):1063-1069
Fanconi anemia (FA) is a rare autosomal recessive disease characterized by chromosome instability and cancer predisposition. At least 11 complementation groups for FA have been identified, and eight FA genes have been cloned. Interestingly, the eight known FA proteins cooperate in a common pathway leading to the interaction of monoubiquitinated FANCD2 and BRCA2 in damaged chromatin. Disruption of this pathway results in the clinical and cellular abnormalities common to all FA subtypes. This review will examine the interaction of the cloned FA proteins with each other and with other DNA damage response proteins (i.e., ATM, ATR, and NBS1). Also, somatic (acquired) disruption of the FA pathway in human tumors appears to account for their chromosome instability and crosslinker hypersensitivity.  相似文献   

16.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A to H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but their cellular function remains unknown. We have previously demonstrated that the FANCA and FANCC proteins interact and form a nuclear complex in normal cells, suggesting that the proteins cooperate in a nuclear function. In this report, we demonstrate that the recently cloned FANCG/XRCC9 protein is required for binding of the FANCA and FANCC proteins. Moreover, the FANCG protein is a component of a nuclear protein complex containing FANCA and FANCC. The amino-terminal region of the FANCA protein is required for FANCG binding, FANCC binding, nuclear localization, and functional activity of the complex. Our results demonstrate that the three cloned FA proteins cooperate in a large multisubunit complex. Disruption of this complex results in the specific cellular and clinical phenotype common to most FA complementation groups.  相似文献   

17.
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error‐free pathway for double‐strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication‐associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.  相似文献   

18.
Fanconi anemia (FA) is a genetic disease characterized by congenital defects, bone marrow failure, and cancer susceptibility. Cells from patients with FA exhibit genomic instability and hypersensitivity to DNA cross linking agents such as mitomycin C. Despite the identification of seven complementation groups and the cloning of six genes, the function of the encoded gene products remains elusive. The FancA (Fanconi anemia complementation group A), FancC, and FancG proteins have been detected within a nuclear complex, but no change in level, binding, or localization has been reported as a result of drug treatment or cell cycle. We show that in immunofluorescence studies, FancA appears as a non-nucleolar nuclear protein that is excluded from condensed, mitotic chromosomes. Biochemical fractionation reveals that the FA proteins are found in nuclear matrix and chromatin and that treatment with mitomycin C results in increase of the FA proteins in nuclear matrix and chromatin fractions. This induction occurs in wild-type cells and mutant FA-D (Fanconi complementation group D) cells but not in mutant FA-A cells. Immunoprecipitation of FancA protein in chromatin demonstrates the coprecipitation of FancA, FancC, and FancG, showing that the FA proteins move together as a complex. Also, fractionation of mitotic cells confirms the lack of FA proteins in chromatin or the nuclear matrix. Furthermore, phosphorylation of FancG was found to be temporally correlated with exit of the FA complex from chromosomes at mitosis. Taken together, these findings suggest a role for FA proteins in chromatin and nuclear matrix.  相似文献   

19.
Fanconi anemia (FA) is an autosomal recessive disorder characterized by bone marrow failure, cancer susceptibility, and a variety of developmental defects. The disease is clinically heterogeneous; eight different complementation groups (FA A–H) and, thus, genetic loci have been discovered. Two genes, FAA and FAC, have been cloned. Disease-associated mutations have been detected and rapid mutation screening makes possible the assignment of patients without resorting to time-consuming cell fusion and complementation analysis. Amplification of specific cDNAs from RNA followed by direct or indirect sequence analysis is a standard method for mutation detection. During the course of such examinations of the FAC gene, we have noted that frequently only one of the expressed alleles is successfully amplified. This can lead to false assignment of patients to a complementation group. As we report here, such cases can be rapidly clarified by retroviral gene transfer and complementation analysis. Received: 30 July 1997 / Accepted: 13 October 1997  相似文献   

20.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A-H). Two of the FA genes (FAA and FAC) have been cloned, and mutations in these genes account for approximately 80% of FA patients. Subtyping of FA patients is an important first step toward identifying candidates for FA gene therapy. In the current study, we analyzed a reference group of 26 FA patients of known subtype. Most of the patients (18/26) were confirmed as either type A or type C by immunoblot analysis with anti-FAA and anti-FAC antisera. In order to resolve the subtype of the remaining patients, we generated retroviral constructs expressing FAA and FAC for transduction of FA cell lines (pMMP-FAA and pMMP-FAC). The pMMP-FAA construct specifically complemented the abnormal phenotype of cell lines from FA-A patients, while pMMP-FAC complemented FA-C cells. In summary, the combination of immunoblot analysis and retroviral-mediated phenotypic correction of FA cells allows a rapid method of FA subtyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号