首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Steady-state kinetic parameters were compared for the action of alpha- and gamma-thrombin on the physiologically important thrombin substrates fibrinogen and factor XIII at 37 degrees C, pH 7.4, and 0.14 M NaCl. gamma-Thrombin, an alpha-thrombin derivative proteolytically cleaved at R-B73 and K-B154, was observed to catalyze the release of fibrinopeptide A (FPA) from fibrinogen with a specificity constant (kcat/Km) of 5 X 10(3) M-1 s-1. This value was approximately 2400-fold lower than the specificity constant for the corresponding alpha-thrombin-catalyzed reaction. The low specificity constant was attributed to an increase in Km and a decrease in kcat for gamma-thrombin-catalyzed release of FPA from fibrinogen. Conversion of alpha-thrombin to gamma-thrombin also resulted in an approximately 800-fold reduction in the specificity constant for thrombin-catalyzed release of fibrinopeptide B (FPB) from fibrin I, as well as a loss in discriminatory power. Whereas alpha-thrombin preferentially released FPA from intact fibrinogen, gamma-thrombin released FPA and FPB from intact fibrinogen at similar rates. In contrast to the large difference in specificity constants observed for alpha- and gamma-thrombin catalysis with fibrin(ogen) as substrate, the specificity constant (2.6 X 10(4) M-1 s-1) observed for gamma-thrombin-catalyzed release of activation peptide from factor XIII was only 5-fold lower than the corresponding value for the alpha-thrombin-catalyzed reaction. Additionally, the promotion of factor XIII activation by fibrin characteristic of the alpha-thrombin-catalyzed reaction did not occur in the gamma-thrombin-catalyzed reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The crosslinking of trypsin with glutaraldehyde and bisimidoesters was attempted. A trypsin derivative with enhanced stability vis à vis autolysis and increased amidase activity was obtained only with bisimidoesters. The trypsin treated with dimethylsuberimidate showed lower esterase and caseinolytic activity as compared to native trypsin.  相似文献   

3.
The amidase activity of human gamma-thrombin has been studied in the pH range 6-10 as a function of NaCl concentration and temperature. As recently found for human alpha-thrombin [Di Cera, E., De Cristofaro, R., Albright, D.J., & Fenton, J.W., II (1991) Biochemistry 30, 7913-7924], the Michaelis-Menten constant, Km, shows a bell-shaped dependence over this pH range with a minimum around pH 7.9 in the presence of 0.1 M NaCl at 25 degrees C. The catalytic constant, kcat, has a bell-shaped pH dependence with a maximum around pH 8.6. A thermodynamic analysis of these parameters has enabled a characterization of the linkage between proton and substrate binding, its dependence on NaCl concentration, and the relevant entropic and enthalpic contributions to binding and catalytic events. Three groups seem to be responsible for the control of gamma-thrombin amidase activity as a function of pH. One of these groups has pK values that are significantly different from those found for alpha-thrombin, and all groups show slightly perturbed enthalpies of ionization. The dependence of gamma-thrombin amidase activity on NaCl concentration is different from that of alpha-thrombin. Increasing NaCl concentration always decreases the substrate affinity for the enzyme in the case of alpha-thrombin, regardless of pH. In the case of gamma-thrombin, such an effect is observed only in the pH range 7.5-9, and a reversed linkage is observed at pH less than 7 and greater than 9.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Human alpha-thrombin increases the permeability of bovine pulmonary artery endothelial cell (CCL-209) monolayers. To determine if this increase is via an enzymatic or receptor-mediated mechanism, enzymatically active forms of alpha-thrombin and enzymatically inactive forms with cell binding activity were incubated with the monolayers. Enzymatic forms included alpha-thrombin and two digestion products, zeta-thrombin (chymotryptic product with 89% clotting activity) and gamma-thrombin (tryptic product). Enzymatically inactive forms included D-Phe-Pro-Arg-chloromethylketone-(PPACK) alpha-thrombin and diisopropylphosphorofluoridate-(DIP) alpha-thrombin. Cell binding activity of alpha- and PPACK-alpha-thrombin was demonstrated to be similar to each other and comparable to that cited in the literature for DIP-alpha-thrombin. gamma-Thrombin, on the other hand, did not compete for binding of 125I-labeled alpha-thrombin. All enzymatic forms of alpha-thrombin increased endothelial permeability as assessed by the clearance of 125I-albumin across the monolayers. Coincubation of PPACK, an enzymatic site inhibitor, with alpha- or gamma-thrombin prevented the increase in permeability, further indicating that alpha-thrombin increased permeability by its enzymatic activity. Both enzymatically inactive forms of alpha-thrombin with high-affinity binding activity had no effect on permeability. To further examine whether cell binding activity of alpha-thrombin contributed to the increased permeability, a sulfated COOH-terminal fragment of hirudin (hirugen) that binds to the anion-binding site of alpha-thrombin but, unlike hirudin, does not interact with the catalytic site was coincubated with alpha-thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Secondary structure and enzymatic properties of human a-thrombin and its gamma-form (obtaining during autolysis of the native enzyme) have been studied by differential scanning calorimetry (DSC) and circular dichroism (CD). According to DSC-data both alpha-thrombin and gamma-thrombin contained only one thermal transition peak at 58.5 and 53.3 degrees C, respectively. A comparison of these values suggested that gamma-form is less stable than initial a-thrombin. In contrast to that the thermogram of DIP-a-thrombin had two peaks (57.5 and 64.5 degrees C). CD spectra showed that conversion a- to gamma-thrombin influenced the secondary structure of the enzyme slightly. The study of the inhibitory effect of such polyanions as ATP and dextran sulfate (DS) upon thrombin-catalyzed cleavages of fibrinogen has shown that the growth of the negative charge of the polyanion molecule resulted in the increase of its inhibitory activity. The catalytically non-active DIP-alpha-thrombin, which retained the native anion-binding exosite 1, was shown to decrease the inhibitory power of the dextran sulfate. It was explained by competition of DS with the exosite 1 of both alpha- and DIP-alpha -thrombin. In contrast to that DIP-gamma-thrombin having exosite 1 destroyed neither competed nor influenced the anticoagulant capacity of dextran sulfate toward the native alpha-thrombin. In accordance with our data thrombin consists of two rather strong interacting domains. It was shown further that its anion-binding exosite 1 may play a significant role in the interaction of the enzyme with dextran sulfate.  相似文献   

6.
An enzyme bearing thrombin-like specificity has been purified to homogeneity from the venom of Trimeresurus flavoviridis (the Habu snake). The enzyme is a monomer with a molecular weight of 23,500 as determined by analytical gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The protein contains approximately 210 amino acid residues and has a relatively high content of aspartic acid and glutamic acid. The isoelectric point was 4.8 and the extinction coefficient at 280 nm for a 1% solution was 11.5. The enzyme acted directly on fibrinogen to form a fibrin clot with 2.0 NIH units. Analysis by high performance liquid chromatography of enzyme-treated fibrinogen revealed the release of a peptide identical in composition to thrombin-induced fibrinopeptide A, but no peptide corresponding to fibrinopeptide B was detected. The enzyme showed esterase and amidase activities on synthetic substrates containing arginine. The enzyme exhibited higher activity toward tosyl-L-arginine methyl ester (TAME) but 6-times lower activity toward benzoyl-L-arginine p-nitroanilide when compared with bovin thrombin. The esterase activity was inhibited by diisopropylfluorophosphate and at a slower rate by phenylmethanesulfonyl fluoride, but was least affected by tosyl-L-lysine chloromethyl ketone, showing that the enzyme is a serine protease like thrombin. The enzyme showed a bell-shaped pH dependence of kcat/Km for hydrolysis of TAME, with a maximum around pH 8.5.  相似文献   

7.
The kinetics of release of old versus new cell wall in two strains of Staphylococcus aureus were studied during autolysis. In both strains the autolytic enzyme is an amidase. Cells were double labeled with (3)H and (14)C, and the distribution of radioactivity in the cell walls was monitored during autolysis. In all cases the rate of release of steady-state lable from peptidoglycan was significantly higher than that of pulse label. Identical results were obtained with whole cells or isolated cell walls. The results suggest that in S. aureus the old cell wall is preferentially released during autolysis.  相似文献   

8.
The protease from Southern Copperhead venom that activates protein C was purified to homogeneity by sulfopropyl (SP)-Sephadex C-50 ion-exchange chromatography, Sephadex G-150 gel filtration, and Mono-S fast protein liquid chromatography. The purified enzyme is a glycoprotein containing 16% carbohydrate, and migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular mass of 40,000 kDa. The enzyme is composed of a single polypeptide chain possessing an NH2-terminal sequence of Val-Ile-Gly-Gly-Asp-Glu-Cys-Asn-Ile-Asn-Glu-His. The purified venom protein C activator hydrolyzed several tripeptide p-nitroanilides. The amidolytic and proteolytic activities of the enzyme were readily inhibited by phenylmethanesulfonyl fluoride, p-amidinophenylmethanesulfonyl fluoride, chloromethyl ketones, and human antithrombin III. Covalent binding of diisopropyl fluorophosphate to the enzyme was confirmed using a tritium-labeled preparation of the inhibitor. The venom protease readily activated human and bovine protein C at 1:1000 enzyme:substrate weight ratio. The protease also cleaved human prothrombin, factor X, factor IX, factor VII, and fibrinogen. Prothrombin coagulant activity decreased upon incubation with the venom protease, and the rate of this reaction was reduced in the presence of calcium. Factor X and factor IX coagulant activity increased upon incubation with the venom protease in the presence of calcium, and decreased in the absence of calcium. Human factor VII clotting activity decreased slightly upon incubation with the venom protease. Although the venom protease did not clot human fibrinogen, it nonetheless cleaved the A alpha chain of fibrinogen, and this cleavage appeared to be associated with a measurable increase in the clottability of the protease-treated fibrinogen by thrombin. These data demonstrate that the protein C activator from Southern Copperhead venom is a typical serine protease with a relatively broad specificity.  相似文献   

9.
A coagulant enzyme, named okinaxobin I, has been purified to homogeneity from the venom of Trimeresurus okinavensis (Himehabu) by chromatographies on Sephadex G-100 and CM-Toyopearl 650M columns. The enzyme was a monomer with a molecular weight of 37,000 and its isoelectric point was 5.4. The enzyme acted on fibrinogen to form fibrin clots with a specific activity of 77 NIH units/mg. Fibrinopeptide B was released at a rate much faster than fibrinopeptide A. The enzyme exhibited 2 to 3 times higher activity toward tosyl-L-arginine methyl ester and benzoyl-L-arginine p-nitroanilide than bovine thrombin. The esterase activity was strongly inhibited by diisopropylfluorophosphate and phenylmethanesulfonyl fluoride, and to a lesser extent by tosyl-L-lysine chloromethyl ketone, indicating that the enzyme is a serine protease like thrombin. The N-terminal sequence was highly homologous to those of coagulant enzymes from T. flavoviridis and Bothrops atrox, moojeni venoms which preferentially release fibrinopeptide A. In order to remove most, if not all, of the bonded carbohydrates, the enzyme was treated with anhydrous hydrogen fluoride (HF), thereby reducing the molecular weight to 30,000. The protein contained approximately 260 amino acid residues when computation was based on this value. The HF-treated enzyme retained about 50% of the clotting and esterolytic (TAME) activities and preferentially released fibrinopeptide B from fibrinogen. The carbohydrate moiety is not crucial for enzyme activity but might be necessary for eliciting full activity.  相似文献   

10.
Recombinant hirudin variant-2(Lys47), was found to be a competitive inhibitor of human alpha-thrombin with respect to peptidyl p-nitroanilide substrates. These results contrast with those of Degryse and coworkers that suggest that recombinant hirudin variant-2(Lys47) inhibited thrombin by a noncompetitive mechanism [Degryse et al. (1989) Protein Engng, 2, 459-465]. gamma-Thrombin, which can arise from alpha-thrombin by autolysis, was shown to have an affinity for recombinant hirudin variant-2(Lys47) that was four orders of magnitude lower than that of alpha-thrombin. It was demonstrated that the apparent noncompetitive mechanism observed previously was probably caused by a contamination of the thrombin preparation by gamma-thrombin. Comparison of the inhibition of alpha-thrombin by recombinant hirudins variant-2(Lys47) and variant-1, which differ from one another in eight out of 65 amino acids, indicated that the two variants have essentially the same kinetic parameters.  相似文献   

11.
Indian green pit viper venom was studied for its coagulant activity. It was observed that the venom contained a significant amount of coagulant activity, which was similar to thrombin in its action on plasma as well as on fibrinogen. The physicochemical properties studied suggested that the venom coagulant activity lacked both platelet aggregating and factor XIII activating properties. Unlike thrombin, the activity was retained in the presence of heparin and at high temperatures. The activity was inhibited by Diisopropyl fluorophosphate and phenyl methyl sulphonyl fluoride, indicating that it was a serine esterase.  相似文献   

12.
Fatty acid amide hydrolase (FAAH) is a mammalian integral membrane enzyme responsible for the hydrolysis of a number of neuromodulatory fatty acid amides, including the endogenous cannabinoid anandamide and the sleep-inducing lipid oleamide. FAAH belongs to a large class of hydrolytic enzymes termed the "amidase signature family," whose members are defined by a conserved stretch of approximately 130 amino acids termed the "amidase signature sequence." Recently, site-directed mutagenesis studies of FAAH have targeted a limited number of conserved residues in the amidase signature sequence of the enzyme, identifying Ser-241 as the catalytic nucleophile and Lys-142 as an acid/base catalyst. The roles of several other conserved residues with potentially important and/or overlapping catalytic functions have not yet been examined. In this study, we have mutated all potentially catalytic residues in FAAH that are conserved among members of the amidase signature family, and have assessed their individual roles in catalysis through chemical labeling and kinetic methods. Several of these residues appear to serve primarily structural roles, as their mutation produced FAAH variants with considerable catalytic activity but reduced expression in prokaryotic and/or eukaryotic systems. In contrast, five mutations, K142A, S217A, S218A, S241A, and R243A, decreased the amidase activity of FAAH greater than 100-fold without detectably impacting the structural integrity of the enzyme. The pH rate profiles, amide/ester selectivities, and fluorophosphonate reactivities of these mutants revealed distinct catalytic roles for each residue. Of particular interest, one mutant, R243A, displayed uncompromised esterase activity but severely reduced amidase activity, indicating that the amidase and esterase efficiencies of FAAH can be functionally uncoupled. Collectively, these studies provide evidence that amidase signature enzymes represent a large class of serine-lysine catalytic dyad hydrolases whose evolutionary distribution rivals that of the catalytic triad superfamily.  相似文献   

13.
Successive thrombin modification by carbodiimide and aliphatic diamines decreases esterase and fibrin-coagulating activity of the enzyme. Modified thrombin causes no platelet aggregation. Water-soluble enzyme conjugates devoid of fibrinogen-coagulating action and possessing increased fibrinolytic affinity to the site of fibrin clot location have been obtained by covalent binding of chymotrypsin to modified thrombin.  相似文献   

14.
An autolytic glycosidase from a lysozyme-resistant strain of Bacillus cereus capable of cleaving the glycosidic linkages of N-unsubstituted glucosamine in the cell wall peptidoglycan was studied. This glycosidase activity, together with N-acetylmuramyl-L-alanine amidase activity, was found in an autolytic enzyme preparation obtained from the 20,000 x g precipitate fraction by means of autolysis followed by ammonium sulfate fractionation. The major saccharide fragments resulting from digestion of the untreated, non-N-acetylated, cell wall peptidoglycan of B. cereus with the autolytic enzyme preparation were identified as N-acetylmuramyl-glucosamine and its dimer. The peptidoglycan N-acetylated with acetic anhydride could also be digested with the same enzyme preparation, giving N-acetylmuramyl-N-acetylglucosamine and its dimer as the major saccharide fragments.  相似文献   

15.
Thrombin binds to platelets and induces platelet activation, but the relationship of binding to activation is not clear. To better define this relationship, we have analyzed parameters of binding and activation by alpha-thrombin and by three analogous proteases that activate platelets somewhat differently. The proteases were nitro-alpha-thrombin, a derivative with nitrated tyrosine, gamma-thrombin, a product of partial proteolysis of alpha-thrombin, and trypsin, a homologous protease. Nitro-alpha-thrombin and native alpha-thrombin activated platelets similarly, whereas gamma-thrombin and trypsin activated to a slightly lesser extent than alpha-thrombin and only after a distinctive delay. alpha-Thrombin and nitro-alpha-thrombin bound to platelets to about the same extent, but only alpha-thrombin showed evidence of saturable binding. Hirudin, a thrombin inhibitor, blocked both platelet activation and saturable binding by alpha-thrombin. With nitro-alpha-thrombin, hirudin blocked platelet activation, but it had no effect on binding. gamma-Thrombin and trypsin bound less than alpha-thrombin and with no evidence of saturable binding. There were identical relationships between the total amount bound and the extent of platelet activation for the four proteases (some show no saturable binding) but distinct differences in the relationships of total amount bound and the rate of activation; similar rates of activation required the binding of three to five times more gamma-thrombin or trypsin than alpha-thrombin. That is, without saturable binding, activation was slower. These data thus show a correlation between total amount bound and extent of activation but no correlation between amount saturably bound and the extent of platelet activation. Conversely, the rate of activation is more closely correlated with saturable binding than with total binding. We conclude that high-affinity saturable binding is not essential for thrombin-induced platelet activation but that it may accelerate the reaction.  相似文献   

16.
alpha-Thrombin derivatives obtained either by site-specific modification at lysyl residues (phosphopyridoxylated) or by limited trypsinolysis (gamma T-thrombin) were compared to correlate structural modifications with the functional reactivity toward fibrin(ogen) and heparin. alpha-Thrombin phosphopyridoxylated in the absence of heparin (unprotected) showed approximately 2 mol of label incorporated/mol of thrombin, but only 1 mol of label incorporated/mol of proteinase when modified in the presence of added heparin (protected). In contrast to native alpha-thrombin, both phosphopyridoxylated alpha-thrombin derivatives failed to interact with a fibrin monomer-agarose column and had reduced fibrinogen clotting activity, which is very similar to gamma T-thrombin. Heparin accelerated the rate of antithrombin III inhibition of alpha-thrombin, heparin-protected modified-alpha-thrombin, and gamma T-thrombin in a manner consistent with a template mechanism but was without effect on unprotected modified alpha-thrombin. In a heparin-catalyzed antithrombin III inhibition assay of alpha-thrombin, we found that D-Phe-Pro-Arg chloromethyl ketone-active site-inactivated gamma T-thrombin competed for heparin binding. It has been shown that limited proteolysis/autolysis of the B-chain of alpha-thrombin in the area around Arg-B73 (in beta T/beta- and gamma T/gamma-thrombin), but not that around Lys-B154 (in gamma T/gamma-thrombin), diminishes specific interactions with fibrinogen (Hofsteenge, J., Braun, P. J., and Stone , S. R. (1988) Biochemistry 27, 2144-2151). In unprotected modified alpha-thrombin, lysyl residues B21, B65, B174, and B252 were phosphopyridoxylated. In heparin-protected modified alpha-thrombin, only lysyl residues B21 and B65 were phosphopyridoxylated. These observations suggest that lysyl residues 21/65 of the B-chain of alpha-thrombin are involved in fibrin(ogen) interactions, and lysyl residues 174/252 of the B-chain are important in heparin interactions.  相似文献   

17.
We previously showed that the alpha-thrombin-antithrombin III complex causes antigenic change in vitronectin as monitored by the monoclonal anti-vitronectin antibody 8E6 (Tomasini & Mosher, 1988). We have extended these studies to other protease-serpin complexes and to gamma-thrombin, a proteolytic derivative of alpha-thrombin. In the presence of heparin, recognition of vitronectin by 8E6 was increased 64- or 52-fold by interaction with the complex of alpha-thrombin and heparin cofactor II or the Pittsburgh mutant (Met358----Arg) of alpha 1-protease inhibitor, respectively. This was comparable to the value obtained with the alpha-thrombin-antithrombin III complex. Factor Xa-serpin complexes were approximately 4-fold less effective than the corresponding thrombin complexes. alpha-Thrombin-serpin complexes but not Xa-serpin complexes formed disulfide-bonded complexes with vitronectin. Antigenic changes and disulfide-bonded complexes were not detected when trypsin- or chymotrypsin-serpin complexes were incubated with vitronectin. gamma-Thrombin caused 7- and 34-fold increases in recognition of vitronectin by MaVN 8E6 in the absence and presence of heparin, respectively. In contrast, alpha-thrombin by itself had no effect. The antigenic change induced by gamma-thrombin was maximal when gamma-thrombin and vitronectin were equimolar, was not dependent on cleavage of vitronectin, and was abolished by inhibition of gamma-thrombin with Phe-Pro-Arg-chloromethyl ketone but not with diisopropyl fluorophosphate. These data indicate that alpha-thrombin is the component in alpha-thrombin-serpin complexes that induces the antigenic change in vitronectin, probably via a region that is preferentially exposed in gamma-thrombin.  相似文献   

18.
gamma-Thrombin stimulated release of [3H]arachidonic acid ([3H]AA) accompanied by a significant production of PAF and lyso-PAF by rabbit platelets. These responses, which reflect PLA2 activation, were observed after a prolonged lag and to a lower extent when compared to those induced by alpha-thrombin which evoked a much higher elevation in intracellular calcium. This elevation together with [3H]AA release were markedly reduced by EDTA. However, addition of ionophore A23187 enhanced the release of [3H]AA by gamma-thrombin to the levels similar to those of alpha-thrombin. We conclude that gamma-thrombin is able to activate PLA2 and suggest that calcium influx may be a limiting factor for this activation.  相似文献   

19.
Thrombin is a Na(+)-activated enzyme.   总被引:7,自引:0,他引:7  
C M Wells  E Di Cera 《Biochemistry》1992,31(47):11721-11730
The amidase activity of human alpha-thrombin has been studied at steady state as a function of the concentration of several chloride salts, at a constant ionic strength I = 0.2 M. All kinetic steps of the catalytic mechanism of the enzyme have been solved by studies conducted as a function of relative viscosity of the solution. Among all monovalent cations, Na+ is the most effective in activating thrombin catalysis. This effect is observed with different amide substrates and also with gamma-thrombin, a proteolytic derivative of the native enzyme which has little clotting activity but retains amidase activity toward small synthetic substrates. The specific effects observed as a function of Na+ concentration are indicative of a binding interaction of this monovalent cation with the enzyme. The basis of this interaction has been explored by measurements of substrate hydrolysis collected in a three-dimensional matrix of substrate concentration, relative viscosity, and Na+ concentration, keeping the ionic strength constant with an inert cation such as choline or tetraethylammonium. The data have globally been analyzed in terms of a kinetic linkage scheme where Na+ plays the role of an allosteric effector. The properties of the enzyme change drastically upon binding of Na+, with substrate binding and dissociation, as well as deacylation, occurring on a time scale which is 1 order of magnitude faster. The apparent association constants for Na+ binding to the various intermediate forms of the enzyme have all been resolved from analysis of experimental data and are in the range of 50-100 M-1 at 25 degrees C. Studies conducted at different temperatures, in the range 15-35 degrees C, have revealed the enthalpic and entropic components of Na+ binding to the enzyme. The results obtained from steady-state measurements are supported by independent measurements of the intrinsic fluorescence of the enzyme as a function of Na+ concentration at a constant ionic strength I = 0.2 M, over the temperature range 15-35 degrees C. These measurements are indicative of a drastic conformational change of the enzyme upon Na+ binding to a single site. The energetics of Na+ binding derived from analysis of fluorescence measurements agree very well with those derived independently from steady-state determinations. It is proposed that thrombin exists in two conformations, slow and fast, and that the slow-->fast transition is triggered by binding of a monovalent cation. The high specificity in thrombin activation found in the case of Na+ is the result of its higher affinity compared to all other monovalent cations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Aldehyde dehydrogenase possessing an esterolytic activity has been purified to homogeneity from rat liver mitochondria. Steady-state kinetic studies suggest that the esterolytic reaction follows an ordered uni-bi mechanism. The formation of an acyl enzyme intermediate via nucleophilic catalysis during the esterase reaction is established kinetically using a series of substrates with varying acyl carbon chains and substituted phenyl octanoates with varying electronic effects. The enzyme was reconstituted into phospholipid vesicles. A significant increase in binding capacity is observed when the enzyme is encapsulated into liposomes containing 4% diphosphatidylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号