首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 97-kDa valosin-containing protein (p97-VCP) belongs to the AAA (ATPases associated with various cellular activities) family and acts as a molecular chaperone in diverse cellular events, including ubiquitinproteasome-mediated degradation. We previously showed that VCP contains a substrate-binding domain, N, and two conserved ATPase domains, D1 and D2, of which D2 is responsible for the major enzyme activity. VCP has a barrel-like structure containing two stacked homo-hexameric rings made of the D1 and D2 domains, and this structure is essential for its biological functions. During ATPase cycles, VCP undergoes conformational changes that presumably apply tensions to the bound substrate, leading to the disassembly of protein complexes or unfolding of the substrate. How ATPase activity is coupled with the conformational changes in VCP complex and the D1 and D2 rings is not clear. In this report, we took biochemical approaches to study the structure of VCP in different nucleotide conditions to depict the conformational changes in the ATPase cycles. In contrast to many AAA chaperones that require ATP/ADP to form oligomers, both wild type VCP and ATP-binding site mutants can form hexamers without the addition of nucleotide. This nucleotide-independent hexamerization requires an intact D1 and the down-stream linker sequence of VCP. Tryptophan fluorescence and trypsin digestion analyses showed that ATP/ADP binding induces dramatic conformational changes in VCP. These changes do not require the presence of an intact ATP-binding site in D1 and is thus mainly attributed to the D2 domain. We propose a model whereby D1, although undergoing minor conformational changes, remains as a relatively trypsin-resistant hexameric ring throughout the ATPase cycle, whereas D2 only does so when it binds to ATP or ADP. After ADP is released at the end of the ATP hydrolysis, D2 ring is destabilized and adopts a relatively flexible and open structure.  相似文献   

2.
The 97-kDa valosin-containing protein (p97-VCP or VCP), a hexameric AAA ATPase, plays an important role in diverse cell activities, including ubiquitin-proteasome mediated protein degradation. In this report, we studied dissociation-reassembly kinetics to analyze the structure-function relationship in VCP. Urea-dissociated VCP can reassemble by itself, but addition of ATP, ADP, or ATP-gamma S accelerates the reassembly. Mutation in the ATP-binding site of D1, but not D2, domain abolishes the ATP acceleration effect and further delays the reassembly. Using hybrid hexamers of the wild type and ATP-binding site mutant, we show that hexameric structure and proper communication among the subunits are required for the ATPase activity and ubiquitin-proteasome mediated degradation. Thus, ATP-binding site in D1 plays a major role in VCP hexamerization, of which proper inter-subunit interaction is essential for the activities.  相似文献   

3.
For the first time, we demonstrate directly a stable complex between a bacterial DnaG (primase) and DnaB (helicase). Utilizing fragments of both proteins, we are able to dissect interactions within this complex and provide direct evidence that it is the C-terminal domain of primase that interacts with DnaB. Furthermore, this C-terminal domain is sufficient to induce maximal stimulation of the helicase and ATPase activities of DnaB. However, the region of DnaB that interacts with the C-terminal domain of primase appears to comprise a surface on DnaB that includes regions from both of the previously identified N- and C-terminal domains. Using a combination of biochemical and physical techniques, we show that the helicase-primase complex comprises one DnaB hexamer and either two or three molecules of DnaG. Our results show that in Bacillus stearothermophilus the helicase-primase interaction at the replication fork may not be transient, as was shown to be the case in Escherichia coli. Instead, primase appears to interact with the helicase forming a tighter complex with enhanced ATPase and helicase activities.  相似文献   

4.
The E1 protein of bovine papillomavirus type-1 is the viral replication initiator protein and replicative helicase. Here we show that the C-terminal ~300 amino acids of E1, that share homology with members of helicase superfamily 3 (SF3), can act as an autonomous helicase. E1 is monomeric in the absence of ATP but assembles into hexamers in the presence of ATP, single-stranded DNA (ssDNA) or both. A 16 base sequence is the minimum for efficient hexamerization, although the complex protects ~30 bases from nuclease digestion, supporting the notion that the DNA is bound within the protein complex. In the absence of ATP, or in the presence of ADP or the non–hydrolysable ATP analogue AMP–PNP, the interaction with short ssDNA oligonucleotides is exceptionally tight (T1/2 > 6 h). However, in the presence of ATP, the interaction with DNA is destabilized (T1/2 ~60 s). These results suggest that during the ATP hydrolysis cycle an internal DNA-binding site oscillates from a high to a low-affinity state, while protein–protein interactions switch from low to high affinity. This reciprocal change in protein–protein and protein–DNA affinities could be part of a mechanism for tethering the protein to its substrate while unidirectional movement along DNA proceeds.  相似文献   

5.
We have probed the structure of the human mitochondrial DNA helicase, an enzyme that uses the energy of nucleotide hydrolysis to unwind duplex DNA during mitochondrial DNA replication. This novel helicase shares substantial amino acid sequence and functional similarities with the bacteriophage T7 primase-helicase. We show in velocity sedimentation and gel filtration analyses that the mitochondrial DNA helicase exists as a hexamer. Limited proteolysis by trypsin results in the production of several stable fragments, and N-terminal sequencing reveals distinct N and C-terminal polypeptides that represent minimal structural domains. Physical analysis of the proteolytic products defines the region required to maintain oligomeric structure to reside within amino acid residues approximately 405-590. Truncations of the N and C termini affect differentially DNA-dependent ATPase activity, and whereas a C-terminal domain polypeptide is functional, an N-terminal domain polypeptide lacks ATPase activity. Sequence similarity and secondary structural alignments combined with biochemical data suggest that amino acid residue R609 serves as the putative arginine finger that is essential for ATPase activity in ring helicases. The hexameric conformation and modular architecture revealed in our study document that the mitochondrial DNA helicase and bacteriophage T7 primase-helicase share physical features. Our findings place the mitochondrial DNA helicase firmly in the DnaB-like family of replicative DNA helicases.  相似文献   

6.
We have built a homology model of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli based on the crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. The resulting model of the hexameric ring of the ATP-bound form of the AAA ATPase suggests a plausible mechanism of ATP binding and hydrolysis, in which invariant residues of Walker motifs A and B and the second region of homology, characteristic of the AAA ATPases, play key roles. The importance of these invariant residues was confirmed by site-directed mutagenesis. Further modelling suggested a mechanism by which ATP hydrolysis alters the conformation of the loop forming the central hole of the hexameric ring. It is proposed that unfolded polypeptides are translocated through the central hole into the protease chamber upon cycles of ATP hydrolysis. Degradation of polypeptides by FtsH is tightly coupled to ATP hydrolysis, whereas ATP binding alone is sufficient to support the degradation of short peptides. Furthermore, comparative structural analysis of FtsH and a related ATPase, HslU, reveals interesting similarities and differences in mechanism.  相似文献   

7.
ATP binding to the PAN-ATPase complex in Archaea or the homologous 19 S protease-regulatory complex in eukaryotes induces association with the 20 S proteasome and opening of its substrate entry channel, whereas ATP hydrolysis allows unfolding of globular substrates. To clarify the conformational changes associated with ATP binding and hydrolysis, we used protease sensitivity to monitor the conformations of the PAN ATPase from Methanococcus jannischii. Exhaustive trypsin treatment of PAN generated five distinct fragments, two of which differed when a nucleotide (either ATP, ATP gamma S, or ADP) was bound. Surprisingly, the nucleotide concentrations altering protease sensitivity were much lower (K(a) 20-40 microm) than are required for ATP-dependent protein breakdown by the PAN-20S proteasome complex (K(m) approximately 300-500 microm). Unlike trypsin, proteinase K yielded several fragments that differed in the ATP gamma S and ADP-bound forms, and thus revealed conformational transitions associated with ATP hydrolysis. Mapping the fragments generated by each revealed that nucleotide binding and hydrolysis induce local conformational changes, affecting the Walker A and B nucleotide-binding motif, as well as global changes extending to its carboxyl terminus. The location and overlap of the fragments also suggest that the conformation of the six subunits is not identical, probably because they do not all bind ATP simultaneously. Partial nucleotide occupancy was supported by direct assays, which demonstrated that, at saturating conditions, only four nucleotides are bound to hexameric PAN. Using the protease protection maps, we modeled the conformational changes associated with ATP binding and hydrolysis in PAN based on the x-ray structures of the homologous AAA ATPase, HslU.  相似文献   

8.
Saccharomyces cerevisiae Dna2 protein is required for DNA replication and repair and is associated with multiple biochemical activities: DNA-dependent ATPase, DNA helicase, and DNA nuclease. To investigate which of these activities is important for the cellular functions of Dna2, we have identified separation of function mutations that selectively inactivate the helicase or nuclease. We describe the effect of six such mutations on ATPase, helicase, and nuclease after purification of the mutant proteins from yeast or baculovirus-infected insect cells. A mutation in the Walker A box in the C-terminal third of the protein affects helicase and ATPase but not nuclease; a mutation in the N-terminal domain (amino acid 504) affects ATPase, helicase, and nuclease. Two mutations in the N-terminal domain abolish nuclease but do not reduce helicase activity (amino acids 657 and 675) and identify the putative nuclease active site. Two mutations immediately adjacent to the proposed nuclease active site (amino acids 640 and 693) impair nuclease activity in the absence of ATP but completely abolish nuclease activity in the presence of ATP. These results suggest that, although the Dna2 helicase and nuclease activities can be independently affected by some mutations, the two activities appear to interact, and the nuclease activity is regulated in a complex manner by ATP. Physiological analysis shows that both ATPase and nuclease are important for the essential function of DNA2 in DNA replication and for its role in double-strand break repair. Four of the nuclease mutants are not only loss of function mutations but also exhibit a dominant negative phenotype.  相似文献   

9.
ATP synthase couples transmembrane proton transport, driven by the proton motive force (pmf), to the synthesis of ATP from ADP and inorganic phosphate (P(i)). In certain bacteria, the reaction is reversed and the enzyme generates pmf, working as a proton-pumping ATPase. The ATPase activity of bacterial enzymes is prone to inhibition by both ADP and the C-terminal domain of subunit epsilon. We studied the effects of ADP, P(i), pmf, and the C-terminal domain of subunit epsilon on the ATPase activity of thermophilic Bacillus PS3 and Escherichia coli ATP synthases. We found that pmf relieved ADP inhibition during steady-state ATP hydrolysis, but only in the presence of P(i). The C-terminal domain of subunit epsilon in the Bacillus PS3 enzyme enhanced ADP inhibition by counteracting the effects of pmf. It appears that these features allow the enzyme to promptly respond to changes in the ATP:ADP ratio and in pmf levels in order to avoid potentially wasteful ATP hydrolysis in vivo.  相似文献   

10.
To better characterize the enzymatic activities required for human papillomavirus (HPV) DNA replication, the E1 helicases of HPV types 6 and 11 were produced using a baculovirus expression system. The purified wild type proteins and a version of HPV11 E1 lacking the N-terminal 71 amino acids, which was better expressed, were found to be hexameric over a wide range of concentrations and to have helicase and ATPase activities with relatively low values for K(m)(ATP) of 12 microm for HPV6 E1 and 6 microm for HPV11 E1. Interestingly, the value of K(m)(ATP) was increased 7-fold in the presence of the E2 transactivation domain. In turn, ATP was found to perturb the co-operative binding of E1 and E2 to DNA. Mutant and truncated versions of in vitro translated E1 were used to identify a minimal ATPase domain composed of the C-terminal 297 amino acids. This fragment was expressed, purified, and found to be fully active in ATP hydrolysis, single-stranded DNA binding, and unwinding assays, despite lacking the minimal origin-binding domain.  相似文献   

11.
The domain structures of the Escherichia coli Rep and Helicase II proteins and their ligand-dependent conformational changes have been examined by monitoring the sensitivity of these helicases to proteolysis by trypsin and chymotrypsin. Limited treatment of unliganded Rep protein (73 kDa) with trypsin results in cleavage at a single site in its carboxyl-terminal region, producing a 68-kDa polypeptide which is stabilized in the presence of ATP, ADP, or adenosine 5'-O-thiotriphosphate) (ATP gamma S). The purified 68-kDa Rep tryptic polypeptide retains single-stranded (ss) DNA binding, DNA unwinding (helicase), and full ATPase activities. When bound to ssDNA, the Rep protein can be cleaved by trypsin at an additional site in its carboxyl-terminal region, producing a 58-kDa polypeptide that also retains ssDNA binding and ATPase activities. This 58-kDa Rep tryptic polypeptide can also be produced by further tryptic treatment of the 68-kDa Rep tryptic polypeptide when the latter is bound to ssDNA. This 58-kDa polypeptide displays a lower affinity for ssDNA indicating that the 10-kDa carboxyl-terminal peptide facilitates Rep protein binding to ssDNA. The 58-kDa Rep tryptic polypeptide is also stabilized in the presence of nucleotides. Based on these and previous studies that showed that the 68-kDa Rep tryptic polypeptide cannot support DNA replication in a system that is dependent upon the phi X174 cis-A protein (Arai, N. & Kornberg, A. (1981) J. Biol. Chem. 256, 5294-5298), we conclude that the carboxyl-terminal end (approximately 5 kDa) of the Rep protein is not required for its helicase or ATPase activities. However, we suggest that this region of the Rep protein is important for its interactions with the phi X174 cis-A protein. Limited treatment of unliganded Helicase II protein (82 kDa) with chymotrypsin results in cleavage after Tyr254, producing a 29-kDa amino-terminal polypeptide and a 53-kDa carboxyl-terminal polypeptide, which remain associated under nondenaturing conditions. This chymotrypsin cleavage reduces the ssDNA binding activity and eliminates the ssDNA-dependent ATPase and helicase activities of the Helicase II protein. The binding of ATP, ADP, ATP gamma S, and/or DNA to Helicase II protein results in protection of this site (Tyr254) from cleavage by chymotrypsin. Limited treatment of Helicase II protein with trypsin results in cleavage near its carboxyl-terminal end producing two polypeptides with apparent Mr = 72,000, in a manner similar to that observed with the Rep protein; these polypeptides are also stabilized by binding ATP or single-stranded DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
A gene encoding thermostable Lon protease from Brevibacillus thermoruber WR-249 was cloned and characterized. The Br. thermoruber Lon gene (Bt-lon) encodes an 88 kDa protein characterized by an N-terminal domain, a central ATPase domain which includes an SSD (sensor- and substrate-discrimination) domain, and a C-terminal protease domain. The Bt-lon is a heat-inducible gene and may be controlled under a putative Bacillus subtilis sigmaA-dependent promoter, but in the absence of CIRCE (controlling inverted repeat of chaperone expression). Bt-lon was expressed in Escherichia coli, and its protein product was purified. The native recombinant Br. thermoruber Lon protease (Bt-Lon) displayed a hexameric structure. The optimal temperature of ATPase activity for Bt-Lon was 70 degrees C, and the optimal temperature of peptidase and DNA-binding activities was 50 degrees C. This implies that the functions of Lon protease in thermophilic bacteria may be switched, depending on temperature, to regulate their physiological needs. The peptidase activity of Bt-Lon increases substantially in the presence of ATP. Furthermore, the substrate specificity of Bt-Lon is different from that of E. coli Lon in using fluorogenic peptides as substrates. Notably, the Bt-Lon protein shows chaperone-like activity by preventing aggregation of denatured insulin B-chain in a dose-dependent and ATP-independent manner. In thermal denaturation experiments, Bt-Lon was found to display an indicator of thermostability value, Tm of 71.5 degrees C. Sequence comparison with mesophilic Lon proteases shows differences in the rigidity, electrostatic interactions, and hydrogen bonding of Bt-Lon relevant to thermostability.  相似文献   

13.
The mechanism of DNA translocation by papillomavirus E1 and polyomavirus LTag hexameric helicases involves consecutive remodelling of subunit-subunit interactions around the hexameric ring. Our biochemical analysis of E1 helicase demonstrates that a 26-residue C-terminal segment is critical for maintaining the hexameric assembly. As this segment was not resolved in previous crystallographic analysis of E1 and LTag hexameric helicases, we determined the solution structure of the intact hexameric E1 helicase by Small Angle X-ray Scattering. We find that the C-terminal segment is flexible and occupies a cleft between adjacent subunits in the ring. Electrostatic potential calculations indicate that the negatively charged C-terminus can bridge the positive electrostatic potentials of adjacent subunits. Our observations support a model in which the C-terminal peptide serves as a flexible 'brace' maintaining the oligomeric state during conformational changes associated with ATP hydrolysis. We argue that these interactions impart processivity to DNA unwinding. Sequence and disorder analysis suggest that this mechanism of hexamer stabilization would be conserved among papillomavirus E1 and polyomavirus LTag hexameric helicases.  相似文献   

14.
Dhh1 is a highly conserved DEAD-box protein that has been implicated in many processes involved in mRNA regulation. At least some functions of Dhh1 may be carried out in cytoplasmic foci called processing bodies (P-bodies). Dhh1 was identified initially as a putative RNA helicase based solely on the presence of conserved helicase motifs found in the superfamily 2 (Sf2) of DEXD/H-box proteins. Although initial mutagenesis studies revealed that the signature DEAD-box motif is required for Dhh1 function in vivo, enzymatic (ATPase or helicase) or ATP binding activities of Dhh1 or those of any its many higher eukaryotic orthologues have not been described. Here we provide the first characterization of the biochemical activities of Dhh1. Dhh1 has weaker RNA-dependent ATPase activity than other well characterized DEAD-box helicases. We provide evidence that intermolecular interactions between the N- and C-terminal RecA-like helicase domains restrict its ATPase activity; mutation of residues mediating these interactions enhanced ATP hydrolysis. Interestingly, the interdomain interaction mutant displayed enhanced mRNA turnover, RNA binding, and recruitment into cytoplasmic foci in vivo compared with wild type Dhh1. Also, we demonstrate that the ATPase activity of Dhh1 is not required for it to be recruited into cytoplasmic foci, but it regulates its association with RNA in vivo. We hypothesize that the activity of Dhh1 is restricted by interdomain interactions, which can be regulated by cellular factors to impart stringent control over this very abundant RNA helicase.  相似文献   

15.
Hsp90 is a dimeric, ATP-regulated molecular chaperone. Its ATPase cycle involves the N-terminal ATP binding domain (amino acids (aa) 1-272) and, in addition, to some extent the middle domain (aa 273-528) and the C-terminal dimerization domain (aa 529-709). To analyze the contribution of the different domains and the oligomeric state on the progression of the ATPase cycle of yeast Hsp90, we created deletion constructs lacking either the C-terminal or both the C-terminal and the middle domain. To test the effect of dimerization on the ATPase activity of the different constructs, we introduced a Cys residue at the C-terminal ends of the constructs, which allowed covalent dimerization. We show that all monomeric constructs tested exhibit reduced ATPase activity and a decreased affinity for ATP in comparison with wild type Hsp90. The covalently linked dimers lacking only the C-terminal domain hydrolyze ATP as efficiently as the wild type protein. Furthermore, this construct is able to trap the ATP molecule similar to the full-length protein. This demonstrates that in the ATPase cycle, the C-terminal domain can be replaced by a cystine bridge. In contrast, the ATPase activity of the artificially linked N-terminal domains remains very low and bound ATP is not trapped. Taken together, we show that both the dimerization of the N-terminal domains and the association of the N-terminal with the middle domain are important for the efficiency of the ATPase cycle. These reactions are synergistic and require Hsp90 to be in the dimeric state.  相似文献   

16.
The cyanobacterial circadian clock oscillator is composed of three clock proteins—KaiA, KaiB, and KaiC, and interactions among the three Kai proteins generate clock oscillation in vitro. However, the regulation of these interactions remains to be solved. Here, we demonstrated that ATP regulates formation of the KaiB-KaiC complex. In the absence of ATP, KaiC was monomeric (KaiC1mer) and formed a complex with KaiB. The addition of ATP plus Mg2+ (Mg-ATP), but not that of ATP only, to the KaiB-KaiC1mer complex induced the hexamerization of KaiC and the concomitant release of KaiB from the KaiB-KaiC1mer complex, indicating that Mg-ATP and KaiB compete each other for KaiC. In the presence of ATP and Mg2+ (Mg-ATP), KaiC became a homohexameric ATPase (KaiC6mer) with bound Mg-ATP and formed a complex with KaiB, but KaiC hexamerized by unhydrolyzable substrates such as ATP and Mg-ATP analogs, did not. A KaiC N-terminal domain protein, but not its C-terminal one, formed a complex with KaiB, indicating that KaiC associates with KaiB via its N-terminal domain. A mutant KaiC6mer lacking N-terminal ATPase activity did not form a complex with KaiB whereas a mutant lacking C-terminal ATPase activity did. Thus, the N-terminal domain of KaiC is responsible for formation of the KaiB-KaiC complex, and the hydrolysis of the ATP bound to N-terminal ATPase motifs on KaiC6mer is required for formation of the KaiB-KaiC6mer complex. KaiC6mer that had been hexamerized with ADP plus aluminum fluoride, which are considered to mimic ADP-Pi state, formed a complex with KaiB, suggesting that KaiB is able to associate with KaiC6mer with bound ADP-Pi.  相似文献   

17.
FliI ATPase forms a homo-hexamer to fully exert its ATPase activity, facilitating bacterial flagellar protein export. However, it remains unknown how FliI hexamerization is linked to protein export. Here, we analyzed the capability of ring formation by FliI and its catalytic mutant variants. Compared to ATP a non-hydrolysable ATP analog increased the probability of FliI hexamerization. In contrast, FliI(E221Q), which retained the affinity for ATP but has lost ATPase activity, efficiently formed the hexamer even in the presence of ATP. The mutations, which reduced the binding affinity for ATP, significantly abolished the ring formation. These results indicate that ATP-binding induces FliI hexamerization and that the release of ADP and Pi destabilizes the ring structure. FliI(E221Q) facilitated flagellar protein export in the absence of the FliH regulator of the export apparatus although not at the wild-type FliI level while the other did not. We propose that FliI couples ATP binding and hydrolysis to its assembly-disassembly cycle to efficiently initiate the flagellar protein export cycle.  相似文献   

18.
Helicase loading factors are thought to transfer the hexameric ring-shaped helicases onto the replication fork during DNA replication. However, the mechanism of helicase transfer onto DNA remains unclear. In Bacillus subtilis, the protein DnaI, which belongs to the AAA+ family of ATPases, is responsible for delivering the hexameric helicase DnaC onto DNA. Here we investigated the interaction between DnaC and DnaI from Geobacillus kaustophilus HTA426 (GkDnaC and GkDnaI, respectively) and determined that GkDnaI forms a stable complex with GkDnaC with an apparent stoichiometry of GkDnaC6-GkDnaI6 in the absence of ATP. Surface plasmon resonance analysis indicated that GkDnaI facilitates loading of GkDnaC onto single-stranded DNA (ssDNA) and supports complex formation with ssDNA in the presence of ATP. Additionally, the GkDnaI C-terminal AAA+ domain alone could bind ssDNA, and binding was modulated by nucleotides. We also determined the crystal structure of the C-terminal AAA+ domain of GkDnaI in complex with ADP at 2.5 Å resolution. The structure not only delineates the binding of ADP in the expected Walker A and B motifs but also reveals a positively charged region that may be involved in ssDNA binding. These findings provide insight into the mechanism of replicative helicase loading onto ssDNA.  相似文献   

19.
Conformational changes of 21 S dynein ATPase from sea urchin sperm flagella were examined by tryptic digestion under physiological conditions. In the presence of 2 mM ATP or ADP plus 100 microM inorganic vanadate (Vi), dynein heavy chains were digested by trypsin into quite different polypeptides from those obtained in other cases (no addition, 2 mM ATP, 4 mM adenosine 5'-(beta,gamma-imido)triphosphate, 4 mM adenosine 5'-(beta,gamma-methylene)triphosphate, 2 mM ADP, 100 microM Vi). In the presence of 4 mM adenosine 5'-O-(3-thiotriphosphate), however, the digestion pattern was similar to that in the presence of ATP (ADP) and Vi, to a certain extent. In all conditions other than the presence of ATP (ADP) and Vi, 165- and 135-kDa polypeptides were the main products, whereas in the presence of ATP (ADP) and Vi, 200-, 150/148-, and 105/96-kDa peptides were produced and 320-kDa peptide became rather inaccessible to trypsin. The latter digestion pattern was not observed in the absence of divalent cations. These results suggest that, in the ATP hydrolysis cycle, dynein changes its conformation remarkably in the dynein-ADP-Pi state, which is presumably responsible for force generation.  相似文献   

20.
Nonstructural protein 3 (NS3) of hepatitis C virus plays a key role in the functioning of the virus. NS3 displays three enzymatic activities, namely, protease activity associated with the N-terminal domain, coupled nucleoside triphosphotase (NTPase), and helicase activities, localized to the C-terminal domain. In this work, we studied the effects of various polymethylene derivatives of nucleic bases on the NTPase (by the example of ATPase) and helicase activities of NS3. It was demonstrated that some tested compounds inhibited NS3 helicase activity; however, a considerable part of the compounds activated the NTPase activity of NS3 and several other proteins displaying NTPase or selective ATPase activity. Such ATPase activators have not been earlier described, suggesting an unusual activation mechanism. The activation ability of the tested compounds depended on the ratio of substrate (ATP) and activator concentrations, and reached its maximum at a 1000-fold excess of the substrate. A mechanism of ATPase activation was proposed to explain the observed effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号