首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
M L Johnson 《Biochemistry》1988,27(2):833-837
Studies of the linkage between ligand binding and subunit assembly of oligomeric proteins have extensively used the concept of free energy coupling. The "order" of these free energy couplings was introduced [Weber, G. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 7098-7102] as the number of subunits that must be liganded to alter specific intersubunit interactions. This concept dictates that the ligation of fewer subunits has no effect, but once the order number of subunits becomes ligated, the specific intersubunit interaction energy between those particular subunits is completely eliminated. Weber's report claims that the free energy coupling between oxygen binding and the dimer-tetramer subunit assembly in stripped human hemoglobin A is "first order". This conclusion is based on the analysis of a set of previously published equilibrium constants [Mills, F. C., Johnson, M. L., & Ackers, G. K. (1976) Biochemistry 15, 5350-5362]. I subsequently reported that the original experimental data, from which the equilibrium constants were derived, are consistent with both the first-order and "second-order" free energy coupling concepts [Johnson, M. L. (1986) Biochemistry 25, 791-797]. I also demonstrated that more precise recent experimental data [Chu, A. H., Turner, B. W., & Ackers, G. K. (1984) Biochemistry, 23, 604-617] are consistent with both the first-order and second-order free energy coupling concepts. A recent article [Weber, G. (1987) Biochemistry 26, 331-332] disagrees that the oxygen-binding data for human hemoglobin A are consistent with a second-order model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Bezafibrate, an antilipidemic drug, is known as a potent allosteric effector of hemoglobin. The previously proposed mechanism for the allosteric potency of this drug was that it stabilizes and constrains the T-state of hemoglobin by specifically binding to the large central cavity of the T-state. Here we report a new allosteric binding site of fully liganded R-state hemoglobin for this drug. The high resolution crystal structure of horse carbonmonoxyhemoglobin in complex with bezafibrate reveals that the bezafibrate molecule lies near the surface of the E-helix of each alpha subunit and the complex maintains the quaternary structure of the R-state. Binding is caused by the close fit of bezafibrate into the binding pocket, which is composed of some hydrophobic residues and the heme edge, suggesting the importance of hydrophobic interactions. Upon binding of bezafibrate, the distance between Fe and the N epsilon(2) of distal His E7(alpha 58) is shortened by 0.22 A in the alpha subunit, whereas no significant structural changes are transmitted to the beta subunit. Oxygen equilibrium studies of R-state-locked hemoglobin with bezafibrate in a wet porous sol-gel indicate that bezafibrate selectively lowers the oxygen affinity of one type of subunit within the R-state, consistent with the structural data. These results disclose a new allosteric mechanism of bezafibrate and offer the first demonstration of how the allosteric effector interacts with R-state hemoglobin.  相似文献   

4.
Hemoglobin Abruzzo is an abnormal human hemoglobin with a substitution at a residue known to be involved in the binding of 2,3-diphosphoglyceric acid. It has increased oxygen affinity and reduced heme-heme interaction in the absence of organic or inorganic phosphate cofactors. In inorganic phosphate buffers the Bohr effect and heme-heme interaction are normal, but the oxygen affinity remains higher than that of hemoglobin A. CO combination in inorganic phosphate is more strongly autocatalytic than in normal hemoglobin and a slower rate of oxygen dissociation is observed. Although many of the functional differences of this variant may be attributed to the high oxygen affinity of the mutant beta chains, the interactions between subunits are also affected by the histidine to arginine substitution at beta143. Stripped hemoglobin Abruzzo appears to be significantly more dissociated than hemoglobin A. Kinetic studies indicate that interaction with organic or inorganic phosphates decreases its subunit dissociation. In all of the functional properties examined, hemoglobin Abruzzo is more sensitive to the allosteric influence of organic and inorganic anions than is hemoglobin A.  相似文献   

5.
6.
A method is described for the statistical analysis of data pertaining to complex state systems, based on the concept of reformulating the parameters describing the system as a hierarchy of interactions, and this method demonstrated on the analysis of spectroscopically monitored hemoglobin oxygen binding data [K. Imai, Biophys. Chem. 37 (1990) 197-210]. The concept of reformulation was first extended to state parameters other than ΔG°s, such as the extinction coefficients (εs) associated with different ligation states during hemoglobin oxygen binding. The reformulated parameters are incrementally allowed to vary in the data fitting procedure, and the statistical significance of the added parameters tested by F and Kolmogorov-Smirnov tests. The result of this method is the minimal set of statistically significant parameters required to describe the data. The hierarchical nature of reformulated parameters allows the physical significance of the subset of statistically significant parameters to be discussed even when all reformulated terms may not be statistically significant. Applying this method to hemoglobin oxygen binding data with the reformulated Adair model demonstrated that at least two, and at most three, of the four reformulated Adair constants are statistically significant. A reformulated square model was found to give a statistically indistinguishable fit from the Adair model, with the statistically significant thermodynamic terms essentially those proposed by Linus Pauling in 1935. A change in Δ ε with subsequent oxygen binding events was found to be significant in both models. These results are consistent with a model for hemoglobin oxygen binding where a subunit changes its conformation upon oxygen binding, and affects the conformation of adjacent subunits.  相似文献   

7.
The process of oxygen-dependent hemoglobin induction in Daphnia magna was studied over an 11-day period of hypoxia (ambient oxygen partial pressure: 3 kPa). Along with the increase of hemoglobin concentration in the hemolymph, hemoglobin became the dominant protein fraction in gel filtration experiments using extracts of whole animals. The size of the native aggregates was constant. However, subunit composition depended on the duration of hypoxia: the pattern of predominantly expressed subunits under hypoxia deviated from that of normoxic individuals. The varying degree of hypoxic induction for different hemoglobin subunits was confirmed by autoradiography. Along with changes in hemoglobin subunit composition, oxygen affinity of the respiratory protein increased. The dynamics of the hemoglobin induction process was analysed. Newly synthesized hemoglobin can be detected within 18 h after the onset of hypoxia. A marked increase in hemoglobin concentration is evident from the third day of hypoxia, and a steady state of hemoglobin concentration is reached within 11 days. The changes of hemoglobin subunit expression in response to hypoxia form the structural basis for the observed adjustments of hemoglobin function leading to enhanced oxygen transport at low ambient oxygen concentrations.  相似文献   

8.
Tertiary structures of proteins are conserved better than their primary structures during evolution. Quaternary structures or subunit organizations, however, are not always conserved. A typical case is found in hemoglobin family. Although human, Scapharca, and Urechis have tetrameric hemoglobins, their subunit contacts are completely different from each other. We report here that only one or two amino acid replacements are enough to create a new contact between subunits. Such a small number of chance replacements is expected during the evolution of hemoglobins. This result explains why different modes of subunit interaction evolved in animal hemoglobins. In contrast, certain interactions between subunits are necessary for cooperative oxygen binding. Cooperative oxygen binding is observed often in dimeric and tetrameric hemoglobins. Conformational change of a subunit induced by the first oxygen binding to the heme group is transmitted through the subunit contacts and increases the affinity of the second oxygen. The tetrameric hemoglobins from humans and Scapharca have cooperativity in spite of their different modes of subunit contact, but the one from Urechis does not. The relationship between cooperativity and the mode of subunit contacts is not clear. We compared the atomic interactions at the subunit contact surface of cooperative and non-cooperative tetrameric hemoglobins. We show that heme-contact modules M3–M6 play a key role in the subunit contacts responsible for cooperativity. A module was defined as a contiguous peptide segment having compact conformation and its average length is about 15 amino acid residues. We show that the cooperative hemoglobins have interactins involving at least two pairs of modules among the four heme-contact modules at subunit contact. Received: 12 January 2001 / Accepted: 3 April 2001  相似文献   

9.
The equilibria of oxygen binding to and kinetics of CO combination with the symmetrical iron-zinc hybrids of a series of variants of human adult hemoglobin A have been measured at pH 7 in the presence of inositol hexaphosphate (IHP). In addition, the kinetics of CO combination have also been measured in the absence of IHP. The hybrids have the heme groups of either the alpha or the beta subunits replaced by zinc protoporphyrin IX, which is unable to bind a ligand and is a good model for permanently deoxygenated heme. The variants examined involve residues located in the alpha1beta2 interface of the hemoglobin tetramer. Alterations of residues located in the hinge region of the interface are found to affect the properties of both the alpha and the beta subunits of the protein. In contrast, alterations of residues in the switch region of the interface have substantial effects only on the mutant subunit and are poorly communicated to the normal partner subunit. When the logarithms of the rate constants for the combination of the first CO molecule with a single subunit in the presence of IHP are analyzed as functions of the logarithms of the dissociation equilibrium constants for the binding of the first oxygen under the same conditions, a linear relationship is found. The relationship is somewhat different for the alpha and beta subunits, consistent with the well-known differences in the geometries of their ligand binding sites.  相似文献   

10.
Replacement of valine by tryptophan or tyrosine at position alpha96 of the alpha chain (alpha96Val), located in the alpha(1)beta(2) subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the alpha96 position. The characteristic of aromatic amino acid substitution at the alpha96 of hemoglobin has been further investigated by producing double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp). r Hb (alpha42Tyr --> Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between alpha42Tyr and beta99Asp in thealpha(1)beta(2) subunit interface of deoxy Hb A. The second mutation, alpha96Val -->Trp, may compensate the functional defects of r Hb (alpha42Tyr --> Phe), if the stability due to the introduction of trypophan at the alpha 96 position is strong enough to overcome the defect of r Hb (alpha42Tyr --> Phe). Double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb (alpha42Tyr --> Phe). (1)H NMR spectroscopic data of r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between alpha 42Tyr and beta 99Asp is essential for the novel oxygen binding properties of deoxy Hb (alpha96Val --> Trp) .  相似文献   

11.
J M Rifkind  J M Heim 《Biochemistry》1977,16(20):4438-4443
Stripped human hemoglobin was shown to have a high apparent zinc association constant of 1.3 X 10(7) M-1 with a stoichiometry of one zinc for every two hemes. The saturation of this site produces a dramatic 3.7-fold increase in the oxygen affinity. The effect of zinc on the oxygen affinity is interrelated with the interaction of 2,3-diphosphoglyceric acid (2,3-DPG) and hemoglobin. Thus, a smaller zinc effect is observed in the presence of added 2,3-DPG. Information about the location of the zinc-binding site responsible for the increased oxygen affinity has been obtained by comparing the binding of zinc to various hemoglobins. Blocking the beta93 sulfhydryl group decreases the apparent zinc association constant by an order of magnitude. The substitution of histidine-beta143 in hemoglobin Abruzzo [beta143 (H21) His leads to Arg] and hemoglobin Little Rock [beta143 (H21) His leads to Gln] decreases the apparent zinc association constant by two orders of magnitude. The substitution of histidine-beta143 by other amino acids and the reaction of the beta93 sulfhydryl group are known to produce dramatic increases in the oxygen affinity. The binding of zinc to one or both of these amino acids can, therefore, explain the zinc-induced increase in the oxygen affinity.  相似文献   

12.
The allosteric model of Monod et al. (1965) (MWC) has been extended to take into account the effects of subunit dissociation. The problem is formulated theoretically in terms of a general model for two allosteric species (dimers and tetramers) linked by a polymerization reaction. Relationships are presented for interpreting the dimer-tetramer association constants in terms of allosteric model parameters.Sub-cases of the general model were tested against recent experimental data on the oxygenation-linked dimer-tetramer equilibria in normal human hemoglobin and in the variant hemoglobin Kansas (β102, Asp → Thr). The objectives of these analyses were: (1) to find the simplest models capable of describing the linked dimer-tetramer equilibria in the two hemoglobin systems, and (2) to evaluate the corresponding model parameters so that allosteric properties of the two hemoglobins may be compared.In the simplest version of the model, the dimer is half of an R-state tetramer. This model was found to be excluded unequivocally by the data for both normal hemoglobin and hemoglobin Kansas when the α and β chains have equal binding affinities. When this two-state model was modified to permit non-equivalent affinities for the chains, the model could be fitted to hemoglobin Kansas, but not to hemoglobin A. A model, in which the dimers are allowed to exist in a state different from the tetramer R state, was found to be consistent with the data for hemoglobin A, with equivalent binding by the α and β chains. For hemoglobin A, the unliganded R-state tetramers have a different subunit dissociation energy from that of fully liganded R-state tetramers. The simplest model capable of describing both hemoglobin A and hemoglobin Kansas was obtained by extending this three-state model to permit (but not require) functional non-equivalence of the α and β chains. For these MWC models, unique estimates were obtained for the model parameters.The allosteric constants for tetrameric hemoglobins A and Kansas are approximately equal. The value obtained from hemoglobin A is similar to previous estimates, whereas the value for hemoglobin Kansas is lower than previously estimated (Edelstein, 1971) by approximately two orders of magnitude. The low affinity of hemoglobin Kansas tetramer does not arise from an unusually high allosteric constant favoring the T-state species. It is largely the consequence of a greatly reduced oxygen affinity of β chains in the T state, and reduced values for the ratio between affinities in the R and T states.  相似文献   

13.
The binding of various alkanes by proteins was recognized years ago. We have studied the effect of butene (C4H8), a short-chain aliphatic hydrocarbon, on the functional properties of human adult hemoglobin. Under 1 atm pressure (100 kPa) butene decreased the affinity of hemoglobin (Hb) for oxygen (p50) by 45% without altering the cooperativity of ligand binding. This effect was independent of pH (from 7.0 to 8.0) and of ionic strength. The changes in the affinity of hemoglobin for oxygen were dependent upon the partial pressure of butene and evoked a saturating mechanism of the binding site(s). Mathematical simulation of the curve relating p50 to the concentration of dissolved butene allowed us to calculate the apparent association constants for one single binding site KHb = 10.4 mmol-1 and KHbO2 = 1.53 mmol-1 to Hb and HbO2 respectively. The larger binding of butene by Hb was confirmed by a 25% decrease in K1, the first association constant of oxygen to the tetrameric hemoglobin. It is concluded that butene is an allosteric effector of human Hb which acts most likely through hydrophobic interactions. It is postulated that the oxygen-linked binding site may be located at the alpha 1 beta 2 interface.  相似文献   

14.
Native and reconstituted hemoglobin H molecules were cross-linked with glutaraldehyde at pH values close to the physiological. The Schiff base adducts were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis before and after reduction with sodium borohydride. The major component had a molecular weight of about 31 000 which corresponded to the dimeric species of the beta subunit. In contrast to the native protein, which has very high oxygen affinity and no heme-heme interaction or 2,3-diphosphoglyceric acid effect, the modified hemoglobin H molecules showed cooperative oxygen binding, decreased oxygen affinity and a noticeable 2,3-diphosphoglyceric acid effect.  相似文献   

15.
In solution, the oxygen affinity of hemoglobin in the T quaternary structure is decreased in the presence of allosteric effectors such as protons and organic phosphates. To explain these effects, as well as the absence of the Bohr effect and the lower oxygen affinity of T-state hemoglobin in the crystal compared to solution, Rivetti C et al. (1993a, Biochemistry 32:2888-2906) suggested that there are high- and low-affinity subunit conformations of T, associated with broken and unbroken intersubunit salt bridges. In this model, the crystal of T-state hemoglobin has the lowest possible oxygen affinity because the salt bridges remain intact upon oxygenation. Binding of allosteric effectors in the crystal should therefore not influence the oxygen affinity. To test this hypothesis, we used polarized absorption spectroscopy to measure oxygen binding curves of single crystals of hemoglobin in the T quaternary structure in the presence of the "strong" allosteric effectors, inositol hexaphosphate and bezafibrate. In solution, these effectors reduce the oxygen affinity of the T state by 10-30-fold. We find no change in affinity (< 10%) of the crystal. The crystal binding curve, moreover, is noncooperative, which is consistent with the essential feature of the two-state allosteric model of Monod J, Wyman J, and Changeux JP (1965, J Mol Biol 12:88-118) that cooperative binding requires a change in quaternary structure. Noncooperative binding by the crystal is not caused by cooperative interactions being masked by fortuitous compensation from a difference in the affinity of the alpha and beta subunits. This was shown by calculating the separate alpha and beta subunit binding curves from the two sets of polarized optical spectra using geometric factors from the X-ray structures of deoxygenated and fully oxygenated T-state molecules determined by Paoli M et al. (1996, J Mol Biol 256:775-792).  相似文献   

16.
Oxygen equilibrium curves of the extracellular hemoglobin from Lumbricus terrestris were determined under a variety of conditions. These data were characterized by (i) a rather small free energy of cooperativity (1.6-2.8 kcal/mol), (ii) a large and strongly pH-dependent Hill coefficient with a maximum value of 7.9, (iii) a high sensitivity of the upper asymptote of the Hill plot to pH, and (iv) a maximum association constant as large as that of the free beta subunit of human hemoglobin A. The effects of LiCl, KCl, NaCl, BaCl2, CaCl2, SrCl2, and MgCl2 on the oxygen equilibrium were measured. Cations, not Cl-, were found to control oxygen binding. Divalent cations have a larger effect on oxygen affinity than monovalent cations, and their effectiveness decreased in the order listed above within each valence class. These specific effects depend in part on ionic radius and cannot be explained in terms of ionic strength. The data indicate that the oxygenation-linked binding of a Ca2+ ion is accompanied by the release of two protons; the binding of a Na+ ion is associated with the release of one proton. These findings indicate that the oxygenation-linked cation-binding site contains two acid groups that do not readily dissociate their protons except when replaced by cations. Incubation at either pH 6.2 or 8.9 had no effect on subsequent measurements of oxygen equilibria at pH 7.8. The apparent heat of oxygenation was found to be -11.8, -7.3, and -9.3 kcal/mol at pH 9.0, 7.4, and 6.6, respectively. These differences indicate that proton-binding processes contribute to the heat of oxygenation.  相似文献   

17.
The extracellular hemoglobin of the notostracan branchiopod Lepidurus bilobatus has an apparent molecular weight of 680,000 and may exist in a dissociation-association equilibrium dependent on pH and ligand state. The pigment contains one heme per 18,000 g protein. However, attempts to dissociate the hemoglobin by harsh denaturing conditions results in a 33-34,000 molecular weight polypeptide chain as well as traces of some 62-64,000 molecular weight material. Limited proteolysis of this hemoglobin with subtilisin produces 14,800 and 16,500 dalton heme-containing polypeptides (domains) which bind oxygen reversibly. These domains, isolated by column chromatography, have a heme content similar to the intact pigment. It is proposed that the intact 34,000 dalton subunit of Lepidurus hemoglobin consists of two linearly linked oxygen binding domains. Oxygen binding properties of the intact hemoglobin show a low oxygen affinity with a slight Bohr effect. In contrast, the isolated domains display a relatively high oxygen affinity and lack a Bohr effect between pH 7.0 and 8.0. It is apparent that the intact 34,000 dalton polypeptide is necessary for the expression of the heterotropic interactions of the native pigment.  相似文献   

18.
Hemoglobin in Frankia, a nitrogen-fixing actinomycete   总被引:1,自引:0,他引:1  
Frankia strain CcI3 grown in culture produced a hemoglobin which had optical absorption bands typical of a hemoglobin and a molecular mass of 14.1 kDa. Its equilibrium oxygen binding constant was 274 nM, the oxygen dissociation rate constant was 56 s(-1), and the oxygen association rate constant was 206 microM(-1) s(-1).  相似文献   

19.
The effects of hydrostatic pressure on the extracellular hemoglobin of Glossoscolex paulistus were investigated by studies of light scattering, intrinsic protein fluorescence, filtration chromatography, and oxygen binding. Pressure promoted a large decrease of light scattering consistent with the dissociation of the hemoglobin. Pressures up to 1.7 kbar caused dissociation with reversibility of the light scattering and fluorescence properties after return to atmospheric pressure. Higher pressures provoked additional dissociation with increasing loss of reversibility. After complete dissociation by incubation at 2.5 kbar followed by decompression, the protein continued mostly dissociated. The dissociated forms were distributed in two populations as based on size exclusion chromatography, one corresponding to small dissociated units (average Mr = 33,000) and the other population corresponding to the one-twelfth subunit (260,000 Mr). The pressure dissociation curves showed no significant dependence on protein concentration suggesting that the native hemoglobin population exists in a distribution of free-energies of association. Both the decrease of concentration dependence and the loss of ability to reassemble seem to increase with the complexity and size of the protein aggregate. These findings permit the conclusion that increased heterogeneity of free-energies of association with the size of the aggregate may result in the molecular individuality of large protein complexes such as subcellular particles and viruses.  相似文献   

20.
The bacterium, Vitreoscilla, can induce the synthesis of a homodimeric hemoglobin under hypoxic conditions. Expression of VHb in heterologous bacteria often enhances growth and increases yields of recombinant proteins and production of antibiotics, especially under oxygen-limiting conditions. There is evidence that VHb interacts with bacterial respiratory membranes and cytochrome bo proteoliposomes. We have examined whether there are binding sites for VHb on the cytochrome, using the yeast two-hybrid system with VHb as the bait and testing every Vitreoscilla cytochrome bo subunit as well as the soluble domains of subunits I and II. A significant interaction was observed only between VHb and intact subunit I. We further examined whether there are binding sites for VHb on cytochrome bo from Escherichia coli and Pseudomonas aeruginosa, two organisms in which stimulatory effects of VHb have been observed. Again, in both cases a significant interaction was observed only between VHb and subunit I. Because subunit I contains the binuclear center where oxygen is reduced to water, these data support the function proposed for VHb of providing oxygen directly to the terminal oxidase; it may also explain its positive effects in Vitreoscilla as well as in heterologous organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号