首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Several plant pathogenic bacteria belonging to the species Pseudomonas syringae produce the phytotoxin coronatine to enhance their virulence. Pseudomonas syringae pv. glycinea PG4180 synthesizes coronatine at the virulence-promoting temperature of 18 degrees C, but not at 28 degrees C, its optimal growth temperature. In contrast, temperature has virtually no effect on coronatine synthesis in P. syringae pv. tomato strain DC3000. A modified two-component system controlling coronatine synthesis and consisting of the histidine protein kinase (HPK), CorS, the response regulator, CorR, and a third essential component, CorP, had been identified previously in both strains. CorS had been identified previously as a potential thermo-sensor. Comparison of the amino acid sequences of the HPKs from the two organisms revealed distinct differences. Site-directed mutagenesis of CorS from PG4180 was used to identify amino acyl residues potentially important for temperature signal perception. Point mutations and combinations of these were introduced into corS of PG4180 to generate corS variants with increased similarities to the respective allele from strain DC3000. These mutations resulted in either loss of activity, increase of thermoresponsiveness, or had no effect on CorS activity. Although none of the introduced mutations resulted in a clear conversion of CorS activity from thermo-responsive to temperature-independent, amino acyl residues important for temperature-dependent CorS activity and coronatine biosynthesis were identified.  相似文献   

5.
6.
Pseudomonas syringae pv. glycinea PG4180 causes bacterial blight of soybean and produces the phytotoxin coronatine (COR) in a temperature-dependent manner. COR consists of a polyketide, coronafacic acid (CFA), and an amino acid derivative, coronamic acid, and is produced optimally at 18 degrees C whereas no detectable synthesis occurs at 28 degrees C. We investigated the impact of temperature on PG4180 during compatible and incompatible interactions with soybean and tobacco plants, respectively. After spray inoculation, PG4180 caused typical bacterial blight symptoms on soybean plants when the bacteria were grown at 18 degrees C prior to inoculation but not when derived from cultures grown at 28 degrees C. The disease outcome was quantified by determination of bacterial populations in planta. The temperature effect was not observed when PG4180 was artificially infiltrated into soybean leaves, indicating that the pre-inoculation temperature and phytotoxin synthesis were important for bacterial invasion via natural plant openings. In the incompatible interaction, PG4180 elicited the hypersensitive response (HR) on tobacco plants regardless of the bacterial pre-inoculation temperature. However, the HR was significantly delayed when tobacco plants were treated with cells of the CFA-overproducing derivative, PG4180.N9, which were derived from cultures grown at 18 degrees C, compared with parallels incubated at 28 degrees C. CFA biosynthesis by PG4180.N9 was optimal at 18 degrees C and negligible at 28 degrees C. The impact of CFA synthesis on the HR was studied with different growth media, mutants, and transconjugants of PG4180, indicating that the amount of synthesized CFA but not that of COR influenced the outcome of the HR. Feeding experiments with purified coronafacoyl compounds suggested that the observed delay of the HR was mediated by CFA, shedding further light on CFA's putative role as a molecular mimic of the plant signaling molecule, jasmonic acid.  相似文献   

7.
8.
9.
10.
The phaseolotoxin-resistant ornithine carbamoyltransferase (ROCT) and phaseolotoxin are produced by Pseudomonas syringae pv. phaseolicola at 18 degrees C but not at 28 degrees C. At 28 degrees C, the pathogen produces a protein(s) that binds (in vitro) to a 485-bp fragment (thermoregulatory region, TRR) from a heterologous clone from the pathogen genomic library, which in multiple copies overrides thermoregulation of phaseolotoxin production in wild-type cells (K. B. Rowley, D. E. Clements, M. Mandel, T. Humphreys, and S. S. Patil, Mol. Microbiol. 8:625-635, 1993). We report here that DNase I protection analysis of the 485-bp fragment shows that a single site is protected from cleavage by the protein in the 28 degrees C extract and that this site contains two repeats of a core motif G/C AAAG separated by a 5-bp spacer. Partially purified binding protein forms specific complexes with a synthetic oligonucleotide containing four tandem repeats of this motif. A 492-bp upstream fragment from argK encoding ROCT also forms specific complexes with the protein in the 28 degrees C crude extract, and a 260-bp subfragment from the TRR containing the binding site cross competes with the argk fragment, indicating that the same protein binds to nucleotides in both fragments. DNase I protection analysis of the fragment from argK revealed four separate protected sequence elements, with element III containing half of the core motif sequence (CTTTG), and the other elements containing similar sequences. Gel shift assays were done with DNA fragments from which one or all of the sites were removed as competitor DNAs against the argK probe. The results of these experiments confirmed that the binding sites (in argK) are necessary for the protein to bind to the argK fragment in a specific manner. Taken together, the results of studies presented here suggest that in cells of P. syringae pv. phaseolicola grown at high temperature argK may be negatively regulated by the protein produced at this temperature.  相似文献   

11.
Coronatine (COR) is a nonhost-specific phytotoxin that substantially contributes to the virulence of several pathovars (pvs.) of Pseudomonas syringae. The COR gene cluster in P. syringae is generally plasmid-encoded in pvs. atropurpurea, glycinea, morsprunorum, and tomato but chromosomally encoded in pv. maculicola. In the present study, we investigated whether the COR plasmids in four pathovars shared other traits including self-transmissibility, conserved oriV/par loci, and insertion sequences (ISs) known to reside on other plasmids in P. syringae. Three COR plasmids were shown to be self-transmissible, and all COR plasmids shared a related oriV/par region. Two COR plasmids hybridized to IS801, an IS element widely distributed in P. syringae. Further analysis of p4180A, a 90-kb COR plasmid in P. syringae pv. glycinea, indicated that multiple copies of IS801 were present on this plasmid, and all copies mapped outside the COR gene cluster. Sequence analysis of the region adjacent to the COR gene cluster in p4180A indicated the presence of additional IS elements including IS870, IS51, and IS1240. The IS elements borne on p4180A may have contributed to horizontal transfer of the COR gene cluster and the evolution of the COR biosynthetic pathway.  相似文献   

12.
Li H  Ullrich MS 《Journal of bacteriology》2001,183(11):3282-3292
In the plant pathogen Pseudomonas syringae pv. glycinea PG4180 and other bacterial species, synthesis of the exopolysaccharide levan is catalyzed by the extracellular enzyme levansucrase. The results of Southern blotting and PCR analysis indicated the presence of three levansucrase-encoding genes in strain PG4180: lscA, lscB, and lscC. In this study, lscB and lscC were cloned from a genomic library of strain PG4180. Sequence analysis of the two lsc genes showed that they were virtually identical to each other and highly similar to the previously characterized lscA gene. lscA and lscC had a chromosomal location, whereas lscB resided on an indigenous plasmid of PG4180. Mutants with impaired expression of individual lsc genes and double mutants were generated by marker exchange mutagenesis. Determination of levansucrase activities in these mutants revealed that the lscB gene product was secreted but not that of lscA or lscC. Our results indicated that lscB and lscC but not lscA contributed to periplasmic levan synthesis of PG4180. The lscB lscC double mutant was completely defective in levan formation and could be complemented by either lscB or lscC. Our data suggested a compartment-specific localization of two lsc gene products, with LscB being the secreted, extracellular enzyme and LscC being the predominantly periplasmic levansucrase. Results of Western blot analyses indicated that lscA was not expressed and that lscA was not associated with levansucrase activities in any particular protein fraction. LscA could be detected in PG4180 only when transcribed from the vector-borne P(lac) promoter. PCR screening in various P. syringae strains with primers derived from the three characterized lsc genes demonstrated the presence of multiple Lsc isoenzymes in other P. syringae pathovars.  相似文献   

13.
Several pathovars of Pseudomonas syringae produce the phytotoxin coronatine (COR), which contains an unusual amino acid, the 1-amino-2-ethylcyclopropane carboxylic acid called coronamic acid (CMA), which is covalently linked to a polyketide-derived carboxylic acid, coronafacic acid, by an amide bond. The region of the COR biosynthetic gene cluster proposed to be responsible for CMA biosynthesis was resequenced, and errors in previously deposited cmaA sequences were corrected. These efforts allowed overproduction of P. syringae pv. glycinea PG4180 CmaA in P. syringae pv. syringae FF5 as a FLAG-tagged protein and overproduction of P. syringae pv. tomato CmaA in Escherichia coli as a His-tagged protein; both proteins were in an enzymatically active form. Sequence analysis of CmaA indicated that there were two domains, an adenylation domain (A domain) and a thiolation domain (T domain). ATP-(32)PP(i) exchange assays showed that the A domain of CmaA catalyzes the conversion of branched-chain L-amino acids and ATP into the corresponding aminoacyl-AMP derivatives, with a kinetic preference for L-allo-isoleucine. Additional experiments demonstrated that the T domain of CmaA, which is posttranslationally modified with a 4'-phosphopantetheinyl group, reacts with the AMP derivative of L-allo-isoleucine to produce an aminoacyl thiolester intermediate. This covalent species was detected by incubating CmaA with ATP and L-[G-(3)H]allo-isoleucine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. It is postulated that the L-allo-isoleucine covalently tethered to CmaA serves as the substrate for additional enzymes in the CMA biosynthetic pathway that catalyze cyclopropane ring formation, which is followed by thiolester hydrolysis, yielding free CMA. The availability of catalytically active CmaA should facilitate elucidation of the details of the subsequent steps in the formation of this novel cyclopropyl amino acid.  相似文献   

14.
15.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Coronamic acid (CMA; 2-ethyl-1-aminocyclopropane 1-carboxylic acid) is an intermediate in the biosynthesis of coronatine (COR), a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. Tn5 mutagenesis and substrate feeding studies were previously used to characterize regions of the COR biosynthetic gene cluster required for synthesis of coronafacic acid and CMA, which are the only two characterized intermediates in the COR biosynthetic pathway. In the present study, additional Tn5 insertions were generated to more precisely define the region required for CMA biosynthesis. A new analytical method for CMA detection which involves derivatization with phenylisothiocyanate and detection by high-performance liquid chromatography (HPLC) was developed. This method was used to analyze and quantify the production of CMA by selected derivatives of P. syringae pv. glycinea which contained mutagenized or cloned regions from the CMA biosynthetic region. pMU2, a clone containing a 6.45-kb insert from the CMA region, genetically complemented mutants which required CMA for COR production. When pMU2 was introduced into P. syringae pv. glycinea 18a/90 (a strain which does not synthesize COR or its intermediates), CMA was not produced, indicating that pMU2 does not contain the complete CMA biosynthetic gene cluster. However, when two plasmid constructs designated pMU234 (12.5 kb) and pKTX30 (3.0 kb) were cointroduced into 18a/90, CMA was detected in culture supernatants by thin-layer chromatography and HPLC. The biological activity of the CMA produced by P. syringae pv. glycinea 18a/90 derivatives was demonstrated by the production of COR in cosynthesis experiments in which 18a/90 transconjugants were cocultivated with CMA-requiring mutants of P. syringae pv. glycinea PG4180. CMA production was also obtained when pMU234 and pKTX30 were cointroduced into P. syringae pv. syringae B1; however, these two constructs did not enable Escherichia coli K-12 to synthesize CMA. The production of CMA in P. syringae strains which lack the COR biosynthetic gene cluster indicates that CMA production can occur independently of coronafacic acid biosynthesis and raises interesting questions regarding the evolutionary origin of the COR biosynthetic pathway.  相似文献   

17.
Characterization of the biological roles of proteins is essential for functional genomics of pseudomonads. Heterologous proteins overproduced in Escherichia coli frequently fail to exhibit biological function. To circumvent this problem, vector pMEKm12 was constructed and used to overexpress proteins in Pseudomonas. The vector contains the pRO1600 replication origin, the maltose-binding protein (MBP) fusion system, and an inducible tac promoter. The pMEKm12 was successfully used to overexpress the syringomycin synthetase SyrB1 protein fused to MBP in Pseudomonas syringae pv. syringae. Furthermore, expression of the MBP-SyrB1 protein in the syrB1 mutant BR132A1 resulted in the restoration of syringomycin production. This vector will facilitate confirmation of the biochemical roles of nonribosomal peptide synthetase genes in Pseudomonas syringae, and studies of gene function from a wide spectrum of pseudomonads.  相似文献   

18.
Pseudomonas syringae pv. glycinea PG4180 produces the polyketide phytotoxin coronatine. The coronatine synthesis genes in PG4180 were previously shown to reside on a 90-kb plasmid designated p4180A. In the present study, clones containing a 34-kb region of p4180A were saturated with Tn5, and 71 unique mutations were recombined into p4180A by marker exchange. The effect of each mutation on coronatine synthesis was determined by analyzing the organic acids produced by the mutants by reverse-phase high-performance liquid chromatography. The organic acids of selected mutants were derivatized to their methyl esters and analyzed by gas chromatography and gas chromatography-mass spectrometry. Mutations in a 20.5-kb region of p4180A completely blocked the synthesis of coronafacic acid and coronatine. Mutations within a 4.4-kb region of p4180A prevented the formation of coronatine but allowed for production of coronafacic acid, coronafacoylvaline, coronafacoylisoleucine, and coronafacoylalloisoleucine. The phenotypes of selected mutants were further confirmed in feeding experiments in which coronafacic acid or coronamic acid was added to the culture media. The results of this study allow us to speculate on the likely sequence of steps in the later stages of coronatine biosynthesis.  相似文献   

19.
Plant-pathogenic bacteria produce various extracellular polysaccharides (EPSs) which may function as virulence factors in diseases caused by these bacteria. The EPS levan is synthesized by the extracellular enzyme levansucrase in Pseudomonas syringae, Erwinia amylovora, and other bacterial species. The lsc genes encoding levansucrase from P. syringae pv. glycinea PG4180 and P. syringae pv. phaseolicola NCPPB 1321 were cloned, and their nucleotide sequences were determined. Heterologous expression of the lsc gene in Escherichia coli was found in four and two genomic library clones of strains PG4180 and NCPPB 1321, respectively. A 3.0-kb PstI fragment common to all six clones conferred levan synthesis on E. coli when further subcloned. Nucleotide sequence analysis revealed a 1,248-bp open reading frame (ORF) derived from PG4180 and a 1,296-bp ORF derived from NCPPB 1321, which were both designated lsc. Both ORFs showed high homology to the E. amylovora and Zymomonas mobilis lsc genes at the nucleic acid and deduced amino acid sequence levels. Levansucrase was not secreted into the supernatant but was located in the periplasmic fraction of E. coli harboring the lsc gene. Expression of lsc was found to be dependent on the vector-based Plac promoter, indicating that the native promoter of lsc was not functional in E. coli. Insertion of an antibiotic resistance cassette in the lsc gene abolished levan synthesis in E. coli. A PCR screening with primers derived from lsc of P. syringae pv. glycinea PG4180 allowed the detection of this gene in a number of related bacteria.  相似文献   

20.
针对细菌对温度变化响应呈现的生理生化特性变化,总结了细胞内作为温度感应元件DNA、RNA及蛋白质分子如何响应温度变化,以及细胞调控生理生化特性的机制。重点介绍了典型的温度响应双组分系统的组成、结构及调控方式,如铜绿假单胞菌PG1480的CorS/CorR双组分系统响应温度的刺激调控细胞基因的表达,枯草芽胞杆菌的DesK/DesR双组分系统响应外界温度变化,调节编码脂肪酸去饱和酶基因des的表达,以及在嗜麦芽单胞菌中发现的LotS/LotR双组分系统,调控低温响应蛋白酶的表达。同时总结c-di-GMP作为第二信使参与温度响应双组分调控的机制;提出研究的热点问题和关键技术以及建议的研究策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号