首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Synchronization of activity of anatomically distributed groups of neurons represents a fundamental event in the processing of information in the brain. While this phenomenon is believed to result from dynamic interactions within the neuronal circuitry, how exactly populations of neurons become synchronized remains largely to be clarified. We propose that astrocytes are directly involved in the generation of neuronal synchrony in the hippocampus. By using a combination of experimental approaches in hippocampal slice preparations, including patch-clamp recordings and confocal microscopy calcium imaging, we studied the effect on CA1 pyramidal neurons of glutamate released from astrocytes upon various stimuli that trigger Ca2+ elevations in these glial cells, including Schaffer collateral stimulation. We found that astrocytic glutamate evokes synchronous, slow inward currents (SICs) and Ca2+ elevations in CA1 pyramidal neurons by acting preferentially, if not exclusively, on extrasynaptic NMDA receptors. Due to desensitization, AMPA receptors were not activated by astrocytic glutamate unless cyclothiazide was present. In the virtual absence of extracellular Mg2+, glutamate released from astrocytes was found to evoke, in paired recordings, highly synchronous SICs from two CA1 pyramidal neurons and, in Ca2+ imaging experiments, Ca2+ elevations that occurred synchronously in domains composed of 2-12 CA1 neurons. In the presence of extracellular Mg2+ (1 mM), synchronous SICs in two neurons as well as synchronous Ca2+ elevations in neuronal domains were still observed, although with a reduced frequency. Our results reveal a functional link between astrocytic glutamate and extrasynaptic NMDA receptors that contributes to the overall dynamics of neuronal synchrony. Our observations also raise a series of questions on possible roles of this astrocyte-to-neuron signaling in pathological changes in the hippocampus such as excitotoxic neuronal damage or the generation of epileptiform activity.  相似文献   

2.
Recent findings suggest that astrocytes respond to neuronally released neurotransmitters with Ca2+ elevations. These Ca2+ elevations may trigger astrocytes to release glutamate, affecting neuronal activity. Neuronal activity is also affected by modulatory neurotransmitters that stimulate G protein-coupled receptors. These neurotransmitters, including acetylcholine and histamine, might affect neuronal activity by triggering Ca2+-dependent release of neurotransmitters from astrocytes. However, there is no physiological evidence for histaminergic or cholinergic receptors on astrocytes in situ. We asked whether astrocytes have these receptors by imaging Ca2+-sensitive dyes sequestered by astrocytes in hippocampal slices. Our results show that immunocytochemically identified astrocytes respond to carbachol and histamine with increases in intracellular free Ca2+ concentration. The H1 histamine receptor antagonist chlorpheniramine inhibited responses to histamine. Similarly, atropine and the M1-selective muscarinic receptor antagonist pirenzepine inhibited carbachol-elicited responses. Astrocyte responses to histamine and carbachol were compared with responses elicited by alpha1-adrenergic and metabotropic glutamate receptor agonists. Individual astrocytes responded to different subsets of receptor agonists. Ca2+ oscillations were the prevalent response pattern only with metabotropic glutamate receptor stimulation. Finally, functional alpha1-adrenergic receptors and muscarinic receptors were not detected before postnatal day 8. Our data show that astrocytes have acetylcholine and histamine receptors coupled to Ca2+. Given that Ca2+ elevations in astrocytes trigger neurotransmitter release, it is possible that these astrocyte receptors modulate neuronal activity.  相似文献   

3.
Calcium oscillations encoding neuron-to-astrocyte communication.   总被引:2,自引:0,他引:2  
The observation that the excitatory neurotransmitter glutamate released from presynaptic terminals can activate, beside the post-synaptic neuron, the glial cell astrocyte, stimulated glial cell research like no other event since the recognition in the 1980s that astrocytes can express on their membrane many receptors for classical neurotransmitters. The properties and the functional role(s) of such a neuron-to-astrocyte signaling have now become the focus of intense research in neurobiology. Indeed, a growing body of evidence has recently highlighted the ability of astrocytes to work as sophisticated detectors of synaptic activity: by changing the frequency of [Ca(2+)](i) oscillations evoked by the synaptic release of glutamate, these cells display the remarkable capacity to discriminate between different levels and patterns of synaptic activity. Furthermore, the observation that astrocytes increase the frequency of [Ca(2+)](i) oscillations in response to repetitive episodes of high neuronal activity challenges the common concept that memory function in the brain is an exclusive property of neuronal cells. Glutamate-mediated [Ca(2+)](i) elevations can also trigger in astrocytes the release of glutamate that can ultimately affect neuronal transmission. Given the wide role played by glutamate in brain physiology, our view on how the brain operates needs now to be revised taking into account the bi-directional, glutamatergic communication between neurons and astrocytes.  相似文献   

4.
S Finkbeiner 《Neuron》1992,8(6):1101-1108
Stimulus-evoked cellular responses are sometimes organized in the form of propagating waves of cytoplasmic Ca2+ increase. Ca2+ waves can be elicited in cultured astrocytes by the neurotransmitter glutamate; however, the propagation mechanism is unknown. Here, qualitative and quantitative features of propagation suggest that astrocytic Ca2+ waves are mediated by an intracellular signal that crosses intercellular junctions. The role of gap junctions in cell-cell Ca2+ wave propagation was specifically tested. Functional gap junctions were demonstrated using a noninvasive fluorescence recovery method and the gap junction blockers halothane and octanol. Gap junction closure prevented intracellular waves from propagating between cells without affecting the velocity of the intracellular wave itself. The pivotal role played by the gap junction creates the potential for dynamic changes in glial connectivity and long-range glial signaling.  相似文献   

5.
Kahlert S  Reiser G 《Cell calcium》2004,36(3-4):295-302
Cooperation between astrocytes and neurons is a unique interaction between two highly specialized cell types of the brain. Therefore, lack of nutrient supply during ischemia requires tight coordination of metabolism between astrocytes and neurons to keep the brain functions intact. To understand the impact of energy limitation on astrocytes, the functions of astrocytes have to be considered: (i) supplementation of neuronal cells, (ii) modulation of the extracellular milieu, mainly of the glutamate level, and (iii) elimination of reactive oxygen species (ROS). In cultured astrocytes and neurons inhibition of oxidative phosphorylation, using rotenone, was tested. Interestingly, this had only a negligible effect on Ca2+ homeostasis in astrocytes, even in combination with a severe glutamate stress. In contrast, in neurons glutamate in the presence of rotenone induced Ca2+ deregulation. Ca2+ homeostasis is very critical for cell survival. A massive and prolonged Ca2+ rise will lead to deregulation of many processes in such a way that the cells affected can hardly survive. Ca2+ homeostasis depends on the energy-consuming processes, which maintain the steep gradient between intracellular and extracellular Ca2+ concentration. Deprivation of oxygen and glucose during ischemia leads to a depletion of ATP in the brain, due to inhibited glycolytic and mitochondrial activity, whereas energy-consuming processes like ion pumps drain the ATP pools. On the other hand, specific mechanisms can protect brain structures against the massive insult of ischemia. Glycogen, stored in astrocytes, can maintain both neurons and astrocytes alive during short limitation of oxygen and glucose. Moreover, astrocytes can fuel ATP generation by providing lactate for neurons.  相似文献   

6.
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.  相似文献   

7.
Astrocyte-induced modulation of synaptic transmission   总被引:8,自引:0,他引:8  
The idea that astrocytes simply provide structural and trophic support to neurons has been challenged by recent evidence demonstrating that astrocytes exhibit a form of excitability and communication based on intracellular Ca2+ variations and intercellular Ca2+ waves, which can be initiated by neuronal activity. These astrocyte Ca2+ variations have now been shown to induce glutamate-dependent Ca2+ elevations and slow inward currents in neurons. More recently, it has been demonstrated that synaptic transmission between cultured hippocampal neurons can be directly modulated by astrocytes. We have reported that astrocyte stimulation can increase the frequency of miniature synaptic currents. Furthermore, we also have demonstrated that an elevation in the intracellular Ca2+ in astrocytes induces a reduction in both excitatory and inhibitory evoked synaptic transmission through the activation of selective presynaptic metabotropic glutamate receptors.  相似文献   

8.
Glutamate-induced exocytosis of glutamate from astrocytes   总被引:3,自引:0,他引:3  
Recent studies indicate that astrocytes can play a much more active role in neuronal circuits than previously believed, by releasing neurotransmitters such as glutamate and ATP. Here we report that local application of glutamate or glutamine synthetase inhibitors induces astrocytic release of glutamate, which activates a slowly decaying transient inward current (SIC) in CA1 pyramidal neurons and a transient inward current in astrocytes in hippocampal slices. The occurrence of SICs was accompanied by an appearance of large vesicles around the puffing pipette. The frequency of SICs was positively correlated with [glutamate]o. EM imaging of anti-glial fibrillary acid protein-labeled astrocytes showed glutamate-induced large astrocytic vesicles. Imaging of FM 1-43 fluorescence using two-photon laser scanning microscopy detected glutamate-induced formation and fusion of large vesicles identified as FM 1-43-negative structures. Fusion of large vesicles, monitored by collapse of vesicles with a high intensity FM 1-43 stain in the vesicular membrane, coincided with SICs. Glutamate induced two types of large vesicles with high and low intravesicular [Ca2+]. The high [Ca2+] vesicle plays a major role in astrocytic release of glutamate. Vesicular fusion was blocked by infusing the Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, or the SNARE blocker, tetanus toxin, suggesting Ca2+- and SNARE-dependent fusion. Infusion of the vesicular glutamate transport inhibitor, Rose Bengal, reduced astrocytic glutamate release, suggesting the involvement of vesicular glutamate transports in vesicular transport of glutamate. Our results demonstrate that local [glutamate]o increases induce formation and exocytotic fusion of glutamate-containing large astrocytic vesicles. These large vesicles could play important roles in the feedback control of neuronal circuits and epileptic seizures.  相似文献   

9.
Microglia are the resident phagocytes of the brain that are responsible for the clearance of injured neurons, an essential step in subsequent tissue regeneration. How death signals are controlled both in space and time to attract these cells toward the site of injury is a topic of great interest. To this aim, we have used the optically transparent zebrafish larval brain and identified rapidly propagating Ca2+ waves that determine the range of microglial responses to neuronal cell death. We show that while Ca2+-mediated microglial responses require ATP, the spreading of intercellular Ca2+ waves is ATP independent. Finally, we identify glutamate as a potent inducer of Ca2+-transmitted microglial attraction. Thus, this real-time analysis reveals the existence of a mechanism controlling microglial targeted migration to neuronal injuries that is initiated by glutamate and proceeds across the brain in the form of a Ca2+ wave.  相似文献   

10.
Recurrent seizures may cause neuronal damage in the hippocampus. As neurons form intimate interactions with astrocytes via glutamate, this neuron-glia circuit may play a pivotal role in neuronal excitotoxicity following such seizures. On the other hand, astrocytes contact vascular endothelia with their endfeet. Recently, we found kainic acid (KA) administration induced microsomal prostaglandin E synthase-1 (mPGES-1) and prostaglandin E(2) (PGE(2)) receptor EP3 in venous endothelia and on astrocytes, respectively. In addition, mice deficient in mPGES-1 exhibited an improvement in KA-induced neuronal loss, suggesting that endothelial PGE(2) might modulate neuronal damage via astrocytes. In this study, we therefore investigated whether the functional associations between endothelia and astrocytes via endothelial mPGES-1 lead to neuronal injury using primary cultures of hippocampal slices. We first confirmed the delayed induction of endothelial mPGES-1 in the wild-type (WT) slices after KA-treatment. Next, we examined the effects of endothelial mPGES-1 on Ca(2+) levels in astrocytes, subsequent glutamate release and neuronal injury using cultured slices prepared from WT and mPGES-1 knockout mice. Moreover, we investigated which EP receptor on astrocytes was activated by PGE(2). We found that endothelial mPGES-1 produced PGE(2) that enhanced astrocytic Ca(2+) levels via EP3 receptors and increased Ca(2+)-dependent glutamate release, aggravating neuronal injury. This novel endothelium-astrocyte-neuron signaling pathway may be crucial for neuronal damage after repetitive seizures, and hence could be a new target for drug development.  相似文献   

11.
Astrocytes, a special type of glial cells, were considered to have supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by neurotransmitters and use a form of signaling, in which ATP acts as an extracellular messenger. Pathological conditions, such as spreading depression, have been linked to abnormal range of wave propagation in astrocytic cellular networks. Nevertheless, the underlying intra- and inter-cellular signaling mechanisms remain unclear. Motivated by the above, we constructed a model to understand the relationship between single-cell signal transduction mechanisms and wave propagation and blocking in astrocytic networks. The model incorporates ATP-mediated IP3 production, the subsequent Ca2+ release from the ER through IP3R channels and ATP release into the extracellular space. For the latter, two hypotheses were tested: Ca2+- or IP3-dependent ATP release. In the first case, single astrocytes can exhibit excitable behavior and frequency-encoded oscillations. Homogeneous, one-dimensional astrocytic networks can propagate waves with infinite range, while in two dimensions, spiral waves can be generated. However, in the IP3-dependent ATP release case, the specific coupling of the driver ATP-IP3 system with the driven Ca2+ subsystem leads to one- and two-dimensional wave patterns with finite range of propagation.  相似文献   

12.
Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory‐driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high‐speed Ca2+ imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus‐neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca2+ waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca2+ elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves—the hippocampus and the piriform cortex—can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 661–672, 2016  相似文献   

13.
Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca2+]i) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca2+]i oscillations followed by larger and sustained [Ca2+]i increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca2+]i increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca2+]i increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca2+]i increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage during the acute phase of ischemia.  相似文献   

14.
A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.  相似文献   

15.
16.
Excessive accumulation of glutamate in the CNS leads to excitotoxic neuronal damage. However, glutamate clearance is essentially mediated by astrocytes through Na+-dependent high-affinity glutamate transporters (excitatory amino acid transporters (EAATs)). Nevertheless, EAAT function was recently shown to be developmentally restricted in astrocytes and undetectable in mature astrocytes. This suggests a need for other cell types for clearing glutamate in the brain. As blood monocytes infiltrate the CNS in traumatic or inflammatory conditions, we addressed the question of whether macrophages expressed EAATs and were involved in glutamate clearance. We found that macrophages derived from human blood monocytes express both the cystine/glutamate antiporter and EAATs. Kinetic parameters were similar to those determined for neonatal astrocytes and embryonic neurons. Freshly sorted tissue macrophages did not possess EAATs, whereas cultured human spleen macrophages and cultured neonatal murine microglia did. Moreover, blood monocytes did not transport glutamate, but their stimulation with TNF-alpha led to functional transport. This suggests that the acquisition of these transporters by macrophages could be under the control of inflammatory molecules. Also, monocyte-derived macrophages overcame glutamate toxicity in neuron cultures by clearing this molecule. This suggests that brain-infiltrated macrophages and resident microglia may acquire EAATs and, along with astrocytes, regulate extracellular glutamate concentration. Moreover, we showed that EAATs are involved in the regulation of glutathione synthesis by providing intracellular glutamate. These observations thus offer new insight into the role of macrophages in excitotoxicity and in their response to oxidative stress.  相似文献   

17.
Astrocytes do not merely serve as the supporting cast and scenery against which starring roles would be played by neurons. Rather, these glial cells are intimately involved in many of the brain's functions by responding to neuronal activity and modulating it. Such interplay between two principle neural cells, neurons and astrocytes, is evidenced in bi-directional glutamatergic astrocyte-neuron signaling. A key feature in this signaling pathway is astrocytic excitability based on variations of cytosolic Ca(2+). It enables astrocytes, through the activation of their glutamatergic receptors, to respond to the same signal used by nearby neurons in synaptic transmission. Furthermore, increases in cytosolic Ca(2+) in astrocytes can subsequently lead to Ca(2+)-dependent exocytotic secretion of gliotransmitter glutamate that in turn can signal to adjacent neurons. Astrocytic secretory machinery includes an assortment of exocytotic proteins which governs a merger of secretory vesicles to the plasma membrane. A cumulative knowledge on astrocytic excitability will aid better understanding of operating procedures in the brain in health and disease.  相似文献   

18.
Immunophilins are receptors for immunosuppressive drugs such as the macrolides cyclosporin A (CsA) and FK506; correspondingly these immunophilins are referred to as cyclophilins and FK506-binding proteins (FKBPs). In particular, CsA targets cyclophilin D (CypD), which can modulate mitochondrial Ca(2+) dynamics. Since mitochondria have been implicated in the regulation of astrocytic cytosolic Ca(2+) (Ca(cyt)(2+)) dynamics and consequential Ca(2+)-dependent exocytotic release of glutamate, we investigated the role of CypD in this process. Cortical astrocytes isolated from CypD deficient mice Ppif(-/-) displayed reduced mechanically induced Ca(cyt)(2+) increases, even though these cells showed augmented exocytotic release of glutamate, when compared to responses obtained from astrocytes isolated from wild-type mice. Furthermore, acute treatment with CsA to inhibit CypD modulation of mitochondrial Ca(2+) buffering, or with FK506 to inhibit FKBP12 interaction with inositol-trisphosphate receptor of the endoplasmic reticulum, led to similar reductive effects on astrocytic Ca(cyt)(2+) dynamics, but also to an enhanced Ca(2+)-dependent exocytotic release of glutamate in wild-type astrocytes. These findings point to a possible role of immunophilin signal transduction pathways in astrocytic modulation of neuronal activity at the tripartite synapse.  相似文献   

19.
It appears almost incredible that the first indications that glutamate excites brain tissue were obtained during the second half of the 20th century, that vesicles containing glutamate were demonstrated in glutamatergic neurons less than 25 years ago, and that glutamate was not accepted as the major excitatory transmitter until about the same time. During this span of time it has also become realized that glutamate is so much more than a conventional neurotransmitter: (1) astrocytes express vesicles accumulating glutamate by vesicular transporters akin to the vesicular glutamate transporters in glutamatergic neurons, and they release glutamate by exocytosis; (2) a series of metabolic processes in astrocytes (glutamate uptake, glutamine synthetase activity, glutamine release) are involved in neuronal reutilization of transmitter glutamate; (3) glutamine may also be utilized for synthesis of GABA, the major inhibitory transmitter; (4) de novo synthesis of glutamate accounts for 20% of cerebral glucose metabolism, all of which initially occurs in astrocytes, and at steady state a corresponding amount of glutamate is oxidatively degraded, mainly or exclusively in astrocytes; (5) tissue contents of glutamate/glutamine increase during enhanced glutamatergic activity, i.e., astrocytic de novo synthesis exceeds astrocytic metabolic degradation of glutamate.  相似文献   

20.
Astrocyte activation in working brain: energy supplied by minor substrates   总被引:7,自引:0,他引:7  
Glucose delivered to brain by the cerebral circulation is the major and obligatory fuel for all brain cells, and assays of functional activity in working brain routinely focus on glucose utilization. However, these assays do not take into account the contributions of minor substrates or endogenous fuel consumed by astrocytes during brain activation, and emerging evidence suggests that glycogen, acetate, and, perhaps, glutamate, are metabolized by working astrocytes in vivo to provide physiologically significant amounts of energy in addition to that derived from glucose. Rates of glycogenolysis during sensory stimulation of normal, conscious rats are high enough to support the notion that glycogen can contribute substantially to astrocytic glucose utilization during activation. Oxidative metabolism of glucose provides most of the ATP for cultured astrocytes, and a substantial contribution of respiration to astrocyte energetics is supported by recent in vivo studies. Astrocytes preferentially oxidize acetate taken up into brain from blood, and calculated local rates of acetate utilization in vivo are within the range of calculated rates of glucose oxidation in astrocytes. Glutamate may also serve as an energy source for activated astrocytes in vivo because astrocytes in tissue culture and in adult brain tissue readily oxidize glutamate. Taken together, contributions of minor metabolites derived from endogenous and exogenous sources add substantially to the energy obtained by astrocytes from blood-borne glucose. Because energy-generating reactions from minor substrates are not taken into account by routine assays of functional metabolism, they reflect a "hidden cost" of astrocyte work in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号