首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In NG108-15 cells, bradykinin (BK) and thapsigargin (TG) caused transient increases in a cytosolic free Ca2+ concentration ([Ca2+]i), after which [Ca2+]i elevated by TG only declined to a higher, sustained level than an unstimulated level. In PC12 cells, carbachol (CCh) evoked a transient increase in [Ca2+]i followed by a sustained rise of [Ca2+]i, whereas [Ca2+]i elevated by TG almost maintained its higher level. In the absence of extracellular Ca2+, the sustained elevation of [Ca2+]i induced by each drug we used was abolished. In addition, the rise in [Ca2+]i stimulated by TG was less affected after CCh or BK, whereas CCh or BK caused no increase in [Ca2+]i after TG. TG neither increased cellular inositol phosphates nor modified the inositol phosphates format on stimulated by CCh or BK. We conclude that TG may release Ca2+ from both IP3-sensitive and -insensitive intracellular pools and that some kinds of signalling to link the intracellular Ca2+ pools and Ca2+ entry seem to exist in neuronal cells.  相似文献   

2.
S C Chow  M Jondal 《Cell calcium》1990,11(10):641-646
Using alpha-linolenic acid (ALA), one of several polyunsaturated fatty acids (PUFAs) that have previously been shown to both mobilize intracellular Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool independently of IP3 production and inhibit Ca2+ influx, the relationship between Ca2+ mobilization from intracellular stores and Ca2+ influx in T cells (JURKAT) was studied. JURKAT cells were treated with 30 microM ALA to deplete the IP3-sensitive Ca2+ pool. When the intracellular free Ca2+ concentration [( Ca2+]i) returned to basal level, fatty acid free bovine serum albumin (BSA) was added to remove extracellular and membrane bound ALA. This resulted in a sustained increase in [Ca2+]i in the absence of inositol phosphates' formation. This sustained increase in [Ca2+]i was insensitive to protein kinase C activation but was inhibited by Ni2+ ions. The extent of Ca2+ influx was found to be correlated to the amount of Ca2+ initially discharged from the IP3-sensitive Ca2+ pool by sub-optimal concentrations of ALA. Ligation of the CD3 complex of the T cell antigen receptor with an anti-CD3 antibody (OKT3) during the sustained [Ca2+]i increased (induced by a sub-optimal concentration of ALA), produced a greater response. No increase in the sustained response was observed when the CD3 complex was activated in cells pretreated with an optimal concentration of ALA. In summary, Ca2+ entry in T cells is activated by emptying of the IP3-sensitive Ca2+ pool which can be dissociated from inositol phosphate production. The rate of Ca2+ influx appears to be closely correlated to the initial discharge of Ca2+ from the IP3-sensitive Ca2+ pool, suggesting that Ca2+ may first enter the depleted pool and then is released into the cytosol.  相似文献   

3.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

4.
The microsomal Ca-ATPase inhibitor thapsigargin induces in rat salivary acinar cells [Ca2+]i oscillations which, though similar to those activated by agonists, are independent of inositol phosphates or inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ stores (Foskett, J. K., Roifman, C., and Wong, D. (1991) J. Biol. Chem. 266, 2778-2782). To examine whether the oscillation mechanism resides in another, thapsigargin- and IP3-insensitive intracellular store, we examined the effects of caffeine and ryanodine, known modulators of Ca2+ release from sarcoplasmic reticulum in excitable cells. Oscillations were induced by caffeine (1-20 mM) in nonoscillating thapsigargin-treated acinar cells, which required the continued presence of caffeine, whereas caffeine was without effect or reduced oscillation amplitude in oscillating cells. Ryanodine (10-50 microM) inhibited oscillations in most of the cells. These results suggest that Ca2+ oscillations in parotid acinar cells are driven by periodic Ca2+ release from an IP3-insensitive Ca2+ store with properties similar to sarcoplasmic reticulum of excitable cells.  相似文献   

5.
Peptides containing Arg-Gly-Asp (RGD) immobilized on beads bind to integrins and trigger biphasic, transient increases in intracellular free Ca2+ ([Ca2+]i) in Madin-Darby canine kidney epithelial cells. The [Ca2+]i increase participates in feedback regulation of integrin-mediated adhesion in these cells. We examined influx pathways and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ store release as possible sources of the [Ca2+]i rise. The RGD-induced [Ca2+]i response requires external Ca2+ (threshold approximately 150 microM), and its magnitude is proportional to extracellular calcium. RGD-induced transients were attenuated by Ca2+ channel inhibitors (Ni2+ and carboxy-amidotriazole) or by plasma membrane depolarization, indicating that Ca2+ influx contributes to the response. Loading cells with heparin reduced the size of RGD-induced [Ca2+]i transients, indicating that IP3-mediated release of Ca2+ from stores may also contribute to the RGD response. Depletion of Ca2+ stores with thapsigargin activated Ni(2+)-sensitive Ca2+ influx that might also be expected to occur after IP3-mediated depletion of stored Ca2-. However, RGD elicited a Ni(2+)-sensitive Ca2+ influx even after pretreatment with thapsigargin, indicating that Ca2+ influx is controlled by a mechanism independent of IP3-mediated store depletion. We conclude that RGD-induced [Ca2+]i transients in Madin-Darby canine kidney cells result primarily from the combination of two distinct mechanisms: 1) IP3-mediated release of intracellular stores, and 2) activation of a Ca2+ influx pathway regulated independently of IP3 and Ca2+ store release. Because Ni2+ and carboxy-amidotriazole inhibited adhesion, whereas store depletion with thapsigargin had little effect, we suggest that the Ca2+ influx mechanism is most important for feedback regulation of integrin-mediated adhesion by increased [Ca2+]i.  相似文献   

6.
In dispersed rat parotid gland acinar cells, the beta-adrenergic agonist (-)-isoproterenol, but not its stereoisomer (+)-isoproterenol, induced a transient 1.6-fold (at maximum stimulation, 2 x 10(-4) M) increase in cytosolic free calcium ([Ca2+]i) within 9 s, which returned to resting levels (approximately 190 nM) by 60 s. This [Ca2+]i response was not altered by chelating extracellular Ca2+ with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) and could be completely blocked by the beta-adrenergic antagonists propranolol (beta 1 + beta 2) and ICI 118,551 (beta 2) but not by atenolol (beta 1). The muscarinic-cholinergic agonist carbachol (at maximum stimulation, 10(-5) M) induced a 3-4-fold elevation in [Ca2+]i within 6 s, which slowly returned to resting levels by 8-10 min. The peak carbachol [Ca2+]i response was not substantially altered by the addition of EGTA to the extracellular medium. However, if the cells were first stimulated with isoproterenol in the EGTA-containing medium, the peak carbachol response was decreased approximately 54%. When carbachol was added to cells in the presence of high extracellular calcium, at the isoproterenol-stimulated [Ca2+]i peak, the resulting [Ca2+]i level was equal to that achieved when carbachol was either added alone or added after propranolol and isoproterenol. 8-Bromo-cyclic AMP induced a [Ca2+]i response similar to that elicited by isoproterenol, which was not additive to that by carbachol. Carbachol induced a approximately 3.5-fold increase in inositol trisphosphate (IP3) production in parotid cells within 30 s. 8-Bromo-cAMP, N6,O2'-dioctanoyl-cAMP, and isoproterenol consistently induced a significant stimulation in IP3 production. The half-maximal concentration of isoproterenol required for [Ca2+]i mobilization and IP3 production was comparable (approximately 10(-5) M). Isoproterenol-induced IP3 formation was blocked by propranolol. The data show that in rat parotid acinar cells, beta-adrenergic stimulation results in IP3 formation and mobilization of a carbachol-sensitive intracellular Ca2+ pool by a mechanism involving cAMP. This demonstrates an interaction between the cAMP and phosphoinositide second messenger systems in these cells.  相似文献   

7.
The fluorescent intracellular Ca2+ indicator, fura2/AM, was used to determine the effects of carbachol, cholecystokinin octapeptide (CCK-8), gastrin and histamine on intracellular Ca2+ ([Ca2+]i) in parietal cells from rabbit gastric mucosa enriched to more than 95% purity by a new Nycodenz gradient/centrifugal elutriation technique. Changes in [Ca2+]i in response to the same agonists were also measured in enriched chief cells. Carbachol, histamine, gastrin and CCK-8 increased parietal cell [Ca2+]i with the response to carbachol greater than CCK -8 = histamine = gastrin. Prestimulation with msximal doses of carbachol blocked histamine-induced increases in [Ca2+]i. In chief cells, carbachol increased [Ca2+]i but to a lesser degree than CCK-8, while histamine had no significant effect on [Ca2+]i. Neither removal of extracellular Ca2+ coupled with acute addition of 1 mM EGTA nor addition of the Ca2+-channel blocker nicardipine prevented agonist-induced changes in [Ca2+]i in either cell type. In the presence and absence of 10 mM LiCl2, carbachol and CCK-8 were found to increase inositol trisphosphate (IP3) content in both parietal and chief cells while histamine had no significant effect on this phosphoinositide hydrolysis product. From these results and previous observations with gastric glands (Chew, C.S. (1986) Am. J. Physiol. 13, G814-G823) we conclude that: carbachol, CCK-8, gastrin and histamine increase parietal cell [Ca2+]i initially by release of Ca2+ from the same intracellular store(s); the release of [Ca2+]i in response to carbachol and CCK-8 in both chief and parietal cells appear to be mediated by IP3; however, other mechanisms may be involved in histamine-induced release of parietal cell Ca2+.  相似文献   

8.
The relationships between agonist-sensitive calcium pools and those discharged by the Ca(2+)-ATPase inhibitor thapsigargin were studied in intact bovine adrenal glomerulosa cells and a subcellular adrenocortical membrane fraction. In Fura-2-loaded glomerulosa cells, angiotensin II (AII) stimulated a rapid increase in cytoplasmic Ca2+ concentration ([Ca2+]i) followed by a smaller plateau phase that was dependent on extra-cellular Ca2+. In such cells thapsigargin caused a sustained and dose-dependent increase in [Ca2+]i which was diminished in Ca(2+)-deficient medium. The contribution of an influx component to the thapsigargin-induced [Ca2+]i response was demonstrated by measurement of 45Ca influx rate in glomerulosa cells. Thapsigargin-induced Ca2+ entry was significantly less than that evoked by AII, and its kinetics were similar to those of the concomitant increase in [Ca2+]i. The rate of emptying of the agonist-responsive Ca2+ pool after thapsigargin treatment, as indicated by the progressive decrease in the size of the AII-induced Ca2+ transient, showed a rapid initial (t1/2 = 1.7 min) component that accounted for about 80% of the response and a slowly decreasing phase with t1/2 = 112 min. The latter thapsigargin-resistant component was abolished by the removal of extracellular Ca2+. Pretreatment with AII dose-dependently attenuated but did not abolish the subsequent Ca2+ response to thapsigargin and also increased the rate of the Ca2+ rise induced by thapsigargin. In bovine adrenocortical microsomes, thapsigargin inhibited the ATP-dependent filling of Ca2+ pools and caused a dose-dependent rise in extravesicular Ca2+ levels when added to previously loaded microsomes. The thapsigargin-releasable Ca2+ pool in adrenal microsomes was larger than the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca2+ pool but only slightly greater than the GTP-releasable pool. Ins(1,4,5)P3-induced Ca2+ release was reduced markedly when ATP-dependent Ca2+ loading of the microsomes was prevented by prior addition of thapsigargin. However, the subsequent Ca2+ response to Ins(1,4,5)P3 was consistently better preserved after the addition of thapsigargin to microsomes preloaded with Ca2+. This difference suggests that although Ca2+ uptake by the Ins(1,4,5)P3-responsive pool is also sensitive to thapsigargin, once filled, this pool shows a slower passive leakage than other thapsigargin-sensitive pools. These findings indicate that thapsigargin increases [Ca2+]i by inhibiting Ca2+ uptake into multiple intracellular Ca2+ pools and by also promoting entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The role of calcium in control of HCl secretion by the gastric parietal cell was examined using a recently available intracellular calcium-releasing agent, thapsigargin, which has been shown, in some cell types, to induce sustained elevation of intracellular calcium ([Ca2+]i), an action that appears to be independent of inositol lipid breakdown and protein kinase C activation and to be mediated, at least partially, by selective inhibition of endoplasmic reticulum Ca2(+)-ATPase. Using the calcium-sensitive fluorescent probe, fura-2, in combination with digitized video image analysis of single cells as well as standard fluorimetric techniques, we found that thapsigargin induced sustained elevation of [Ca2+]i in single parietal cells and in parietal cells populations. Chelation of medium calcium led to a transient rise and fall in [Ca2+]i, indicating that the sustained elevation in [Ca2+]i in response to thapsigargin was due to both intracellular calcium release and influx. Although thapsigargin appeared to affect the same calcium pool(s) regulated by the cholinergic agonist, carbachol, and the pattern of thapsigargin-induced increases in [Ca2+]i were similar to the plateau phase of the cholinergic response, thapsigargin did not induce acid secretory responses of the same magnitude as those initiated by carbachol (28 vs 600% of basal). The protein kinase C activator, 12-O-tetradecanoyl phorbol-13-acetate (TPA) potentiated the secretory response to thapsigargin but this combined response also did not attain the same magnitude as the maximal cholinergic response. In the presence but not the absence of medium calcium, thapsigargin potentiated acid secretory responses to histamine, which elevate both cyclic AMP (cAMP) and [Ca2+]i in parietal cells, as well as forskolin and cAMP analogues but had no effect on submaximal and an inhibitory effect on maximal cholinergic stimulation. Furthermore, thapsigargin did not fully mimic potentiating interactions between histamine and carbachol, either in magnitude or in the pattern of temporal response. Assuming that the action of thapsigargin is specific for intracellular calcium release mechanisms, these data suggest that 1) sustained influx of calcium is necessary but not sufficient for cholinergic activation of parietal cell HCl secretion and for potentiating interactions between cAMP-dependent agonists and carbachol; 2) mechanisms in addition to elevated [Ca2+]i and protein kinase C activation may be involved in cholinergic regulation; and 3) increases in [Ca2+]i in response to histamine are not directly involved in the mechanism of histamine-stimulated secretion.  相似文献   

10.
The relative contribution of voltage-sensitive Ca2+ channels, Ca(2+)-ATPases, and Ca2+ release from intracellular stores to spontaneous oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) observed in secretory cells is not well characterized owing to a lack of specific inhibitors for a novel thapsigargin (Tg)-insensitive Ca(2+)-ATPase expressed in these cells. We show that spontaneous [Ca2+]i oscillations in GH3 cells were unaffected by Ca2+ depletion in inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores by the treatment of Tg, but could be initiated by application of caffeine. Moreover, we demonstrate for the first time that these spontaneous [Ca2+]i oscillations were highly temperature dependent. Decreasing the temperature from 22 to 17 degrees C resulted in an increase in the frequency, a reduction in the amplitude, and large inhibition of [Ca2+]i oscillations. Furthermore, the rate of ATP-dependent 45Ca2+ uptake into GH3-derived microsomes was greatly reduced at 17 degrees C. The effect of decreased temperatures on extracellular Ca2+ influx was minor because the frequency and amplitude of spontaneous action potentials, which activate L-type Ca2+ channels, was relatively unchanged at 17 degrees C. These results suggest that in GH3 secretory cells, Ca2+ influx via L-type Ca2+ channels initiates spontaneous [Ca2+]i oscillations, which are then maintained by the combined activity of Ca(2+)-ATPase and Ca(2+)-induced Ca2+ release from Tg/IP3-insensitive intracellular stores.  相似文献   

11.
D-myo-Inositol (1,4,5)-trisphosphate ((1,4,5)IP3)-induced Ca2+ release and subsequent Ca2+ reuptake were investigated in saponin-permeabilized rat parotid acinar cells. Following the rapid release of Ca2+ by (1,4,5)IP3, Ca2+ was resequestered. The sequential addition of submaximal concentrations of (1,4,5)IP3 resulted in sequential Ca2+ release. However, when the cells were challenged with the poorly metabolized (1,4,5)IP3 analogues, (1,4,5)IPS3 or (2,4,5)IP3, or under conditions where the metabolism of authentic (1,4,5)IP3 was reduced, Ca2+ reuptake again occurred, but sequestered Ca2+ was not released by subsequent additions of (1,4,5)IP3. The sequestered Ca2+ was, however, released by thapsigargin, an agent which inhibits active Ca2+ uptake into the (1,4,5)IP3-sensitive pool. Furthermore, the rate of thapsigargin-induced release was significantly increased in the continued presence of an (1,4,5)IP3 stimulus. Thus, Ca2+ reuptake apparently occurred into the (1,4,5)IP3- and thapsigargin-sensitive Ca2+ store and (1,4,5)IP3 continued to influence the permeability of this pool to Ca2+ during Ca2+ reuptake. In contrast to the findings in permeabilized cells, Ca2+ reuptake did not occur in the sustained presence of (1,4,5)IP3 in intact parotid cells. We conclude that cell permeabilization reveals a kinetic, and presumably structural, separation of Ca2+ uptake and release sites within the (1,4,5)IP3-regulated intracellular organelle.  相似文献   

12.
In the absence of extracellular Ca2+, treatment of mouse lacrimal acinar cells with maximal concentrations of methacholine released Ca2+ from intracellular stores. No additional Ca2+ was mobilized by subsequent application of the intracellular Ca(2+)-ATPase inhibitor, thapsigargin, the stable inositol 1,4,5-trisphosphate ((1,4,5)IP3) analog, inositol 2,4,5-trisphosphate ((2,4,5)IP3) (by microinjection), or the Ca2+ ionophore, ionomycin. However, following prolonged activation of cells by methacholine in the presence of extracellular Ca2+, Ca2+ accumulated into a pool which was released by ionomycin but not by thapsigargin. This latter accumulation was blocked by prior microinjection of ruthenium red, indicating that it represents mitochondrial uptake. In saponin-permeabilized lacrimal cells, two Ca(2+)-sequestering pools were detected: (i) a ruthenium red-sensitive, thapsigargin-insensitive pool, presumed to be the mitochondria; and (ii) a ruthenium red-insensitive, thapsigargin-sensitive pool. Only the thapsigargin-sensitive pool accumulated Ca2+ at concentrations similar to those in unstimulated cells. The thapsigargin-sensitive Ca2+ pool was sensitive to (1,4,5)IP3; however, in contrast to findings in intact cells, only 44% of this pool was releasable by (1,4,5)IP3 or (2,4,5)IP3. These data indicate that, in intact lacrimal acinar cells, all exchangeable (ionomycin-sensitive) Ca2+ residues in a pool which responds homogeneously to agonists, (1,4,5)IP3, and thapsigargin. Prolonged elevation of [Ca2+]i results in Ca2+ accumulation into a second, ruthenium red-sensitive pool, presumably mitochondria. Finally, permeabilization of the cells fragments the non-mitochondrial pool, resulting in two pools, one sensitive and one insensitive to (1,4,5)IP3.  相似文献   

13.
The signal transduction mechanisms involved in the regulation of phagocytosis are largely unknown. We have recently shown that in neutrophils, when IgG-mediated phagocytosis is stimulated by formyl-methionyl-leucyl-phenyl-alanine (fMLP), the enhanced ingestion is dependent on the increase in [Ca2+]i which results from ligation of Fc receptors by the IgG-coated target (Rosales, C., and Brown, E. (1991) J. Immunol. 146, 3937-3944). Now, we have studied the mechanism by which this rise in [Ca2+]i occurs. Aggregated IgG, the monoclonal antibody 3G8 (which recognizes Fc receptor type III), and insoluble immune complexes caused an increase in [Ca2+]i. The rise in [Ca2+]i induced by Fc receptor ligation was resistant to pertussis toxin. In contrast, fMLP induced a rise in [Ca2+]i which was inhibited by pertussis toxin. fMLP-induced [Ca2+]i was accompanied by an accumulation of inositol 1,4,5-trisphosphate (IP3) which peaked by 15 s, and which was also abolished by pertussis toxin. IP3 accumulation after aggregated IgG, 3G8, or insoluble immune complexes was much less than after fMLP. Unlike [Ca2+]i rise induced by Fc receptor ligation, this small increase in IP3 was inhibited by pertussis toxin. These data demonstrated that the [Ca2+]i increase induced by Fc receptor ligation is not mediated by IP3. Immediate pretreatment of human polymorphonuclear neutrophils with optimal doses of fMLP also reduced subsequent increase in [Ca2+]i rise from thapsigargin, a sesquiterpene lactone tumor promoter that releases intracellular Ca2+ from IP3-sensitive stores without IP3 turnover. Similarly, to its effects on thapsigargin, fMLP inhibited the [Ca2+]i rise upon subsequent immune complex binding. Pretreatment of cells with immune complexes also prevented subsequent [Ca2+]i rise from thapsigargin and fMLP. These data demonstrate that IgG Fc receptor ligation and fMLP activation of human polymorphonuclear neutrophils use distinct signal transduction mechanisms to release Ca2+ from the same thapsigargin-sensitive intracellular pool. In contrast to fMLP, signal transduction for increased [Ca2+]i after Fc receptor stimulation does not involve a pertussis toxin-sensitive G protein, and is independent of IP3.  相似文献   

14.
Jan CR  Tseng CJ 《Life sciences》1999,65(23):2513-2522
The effect of miconazole on intracellular calcium levels ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was studied using fura-2 as the Ca2+ indicator. Miconazole increased [Ca2+]i dose-dependently at concentrations of 5-100 microM. The [Ca2+]i transient consisted of an initial rise, a gradual decay and an elevated plateau (220 s after addition of the drug). Removal of extracellular Ca2+ partly reduced the miconazole response. Mn2+ quench of fura-2 fluorescence confirmed that miconazole induced Ca2+ influx. The miconazole-sensitive intracellular Ca2+ store overlapped with that sensitive to thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump, because 20 microM miconazole depleted the thapsigargin (1 microM)-sensitive store, and conversely, thapsigargin abolished miconazole-induced internal Ca2+ release. Miconazole (20-50 microM) partly inhibited the capacitative Ca2+ entry induced by 1 microM thapsigargin, measured by depleting intracellular Ca2+ store in Ca(2+)-free medium followed by addition of 10 mM CaCl2. Miconazole induced capacitative Ca2+ entry on its own. Pretreatment with 0.1 mM La3+ partly inhibited 20 microM miconazole-induced Mn2+ quench of fura-2 fluorescence and [Ca2+]i rise, suggesting that miconazole induced Ca2+ influx via two pathways separable by 0.1 mM La3+. Miconazole-induced internal Ca2+ release was not altered when the cytosolic level of inositol 1,4,5-trisphosphate (IP3) was substantially inhibited by the phospholipase C inhibitor U73122.  相似文献   

15.
At concentrations greater than 0.01 microM, thapsigargin (ThG) dose-dependently caused an increase in cytosolic free Ca2+ concentration ([Ca2+]i) in rat parotid acinar cells, as measured by the fluorescent Ca(2+)-indicator fura-2. In the absence of extracellular Ca2+, a transient increase in [Ca2+]i by ThG was observed, and subsequent addition of carbachol (CCh) did not produce a further [Ca2+]i response, suggesting that ThG released Ca2+ from the CCh-sensitive intracellular Ca2+ pool. Since ThG did not stimulate formation of inositol phosphates, the ThG-induced Ca2+ mobilization is independent of phosphoinositide breakdown. High concentrations (greater than 0.1 microM) of ThG induced amylase release from rat parotide acini, but the effect was very poor as compared with that of CCh or the protein kinase C activator, PMA (phorbol 12-myristate 13-acetate). Combined addition of ThG and PMA modestly potentiated amylase release induced by PMA alone. These results support the view that amylase release by muscarinic stimulation is mediated mainly by activation of protein kinase C rather than a rise in [Ca2+]i, although Ca2+ may modulate the secretory response.  相似文献   

16.
Our studies assessed the effects of increases in intracellular calcium concentrations [( Ca2+]i) on leukotriene synthesis and membrane translocation of 5-lipoxygenase (5LO). The calcium ionophore ionomycin and the tumor promoter thapsigargin stimulated leukotriene production and translocation of 5-lipoxygenase to the membrane. Both agents elicited prolonged rises in [Ca2+]i. Leukotriene C4 production associated with [Ca2+]i in cells stimulated with various concentrations of ionomycin and thapsigargin suggests that a threshold [Ca2+]i level of approximately 300-400 nM is required. In the absence of extracellular Ca2+, both the ionomycin- and thapsigargin-induced rises in [Ca2+]i were transient, indicating that the prolonged [Ca2+]i elevation is due to an influx of extracellular Ca2+. Addition of EGTA to the external medium before, or at different times during, the treatment with ionomycin or thapsigargin instantaneously inhibited 5LO translocation and leukotriene synthesis, indicating that Ca2+ influx plays an essential role in 5LO membrane translocation and leukotriene synthesis. No leukotriene production was detected when cells were stimulated by a physiological stimulus of leukotriene D4. The addition of 100 nM leukotriene D4 triggered peak rises in [Ca2+]i that were comparable to those achieved by the ionomycin and thapsigargin. However, the leukotriene D4 induced rise was transient and rapidly declined to a lower but still elevated steady-state level, which was attributed to Ca2+ influx. Stimulation with 100 nM leukotriene D4 for 15 s increased the cellular levels of 1,4,5-inositol triphosphate (IP3), 1,3,4-IP3, and 1,3,4,5-inositol tetraphosphate (IP4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

18.
Intracellular free calcium concentration ([Ca2+]i) was measured in fura-2-loaded single rat mesangial cells by dual wavelength spectrofluorometry. Stimulation with arginine vasopressin (AVP) caused an initial sharp rise of [Ca2+]i followed by repetitive spikes. The frequency of the oscillations was dependent on the concentration of AVP. At 0.1, 1.0, 10.0, and 100.0 nM AVP, the frequencies of oscillations were 0.17 +/- 0.05 (n = 6), 0.32 +/- 0.05 (n = 6), 0.49 +/- 0.05 (n = 6), and 0.48 +/- 0.05 min-1 (n = 5), respectively. Reduction in extracellular [Ca2+] reduced the frequency of AVP-induced oscillations but did not abolish the oscillations. The frequency of calcium oscillations, upon stimulation with 1.0 nM AVP, was directly correlated with the basal [Ca2+]i prior to stimulation. Oscillation frequency increased with increasing temperature. An Arrhenius plot between 24 and 37 degrees C indicated a strong temperature dependency of the oscillations with a Q10 of 3.0. Protein kinase C stimulation by active phorbol esters inhibited AVP-induced calcium oscillations but not the initial [Ca2+] response to AVP. These observations are consistent with a model incorporating a feedback loop linking [Ca2+]i to the mechanism of [Ca2+]i increase. Ca(2+)-induced Ca2+ release may be involved, whereby inositol 1,4,5-trisphosphate (inositol 1,4,5-P3) formation releases Ca2+ from an inositol 1,4,5-P3-sensitive pool, with subsequent Ca2+ uptake and release from an inositol 1,4,5-P3-insensitive pool.  相似文献   

19.
The aliphatic alcohol octanol is thought to modulate enzyme secretion from the exocrine pancreas by the inhibition of gap junction permeability. We have now investigated the effects of octanol on salivary secretion and intracellular calcium concentration ([Ca2+]i), measured in isolated perfused rat mandibular glands and in isolated mandibular acinar cells respectively. Stimulation of perfused glands with 10 microM carbachol (CCh) evoked a rapid increase in fluid secretion followed by a decrease to a sustained elevated level. Application of 1 mM octanol during CCh stimulation inhibited fluid secretion reversibly. In isolated acini, the CCh-induced [Ca2+]i increase was reversibly inhibited by the same concentration of octanol. However, octanol also inhibited the increase in [Ca2+]i in single acinar cells where gap junctions were no longer functional, indicating that octanol directly affected the intracellular Ca2+ signalling pathway. The initial increase in [Ca2+]i induced by 0.5-10 microM CCh, which is due to Ca2+ release from IP3-sensitive Ca2+ stores, was not affected by pretreatment with octanol. In contrast, CCh-, phenylephrine- or thapsigargin-induced Ca2+ entry was almost completely and reversibly inhibited by octanol. Octanol also blocked agonist-evoked Ca2+ entry in pancreatic acinar cells, and thapsigargin-evoked Ca2+ entry in fibroblasts. These data strongly suggest that octanol blocks salivary secretion from mandibular gland by the inhibition of capacitative Ca2+ entry, and raise the possibility that octanol may be a useful tool for inhibiting agonist-evoked Ca2+ entry pathways.  相似文献   

20.
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells   总被引:5,自引:0,他引:5  
T R Cheek  O Thastrup 《Cell calcium》1989,10(4):213-221
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号