首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
We have studied a group of midline cells in the embryonic brain of the grasshopper by using immunocytochemical and intracellular dye injection techniques. This cluster of midline cells differentiates between the pars intercerebralis lobes of the protocerebrum during early embryogenesis, and is composed of putative midline progenitors as well as neuronal and glial cells. Annulin immunoreactive glial processes surround the borders of the midline cell cluster and also form a network of processes extending from there to the borders of proliferative clusters in the brain hemispheres. Among the cells that derive from the midline cluster are two bilaterally symmetrical pairs of identified primary commissure pioneer neurons. By navigating along the glial bound borders of the midline proliferative cluster, the axons of these pioneers establish an initial axonal bridge across the brain midline. This analysis identifies a glial-bound midline proliferative cluster in the brain and shows that neuronal and glial cells of this cluster are closely associated with neurons pioneering the primary brain commissure. Comparable features of midline cells in the ventral ganglia and similarities to other proliferative clusters in the brain hemispheres are discussed.  相似文献   

2.

Background

Tumor heterogeneity is a major obstacle for finding effective treatment of Glioblastoma (GBM). Based on global expression analysis, GBM can be classified into distinct subtypes: Proneural, Neural, Classical and Mesenchymal. The signatures of these different tumor subtypes may reflect the phenotypes of cells giving rise to them. However, the experimental evidence connecting any specific subtype of GBM to particular cells of origin is lacking. In addition, it is unclear how different genetic alterations interact with cells of origin in determining tumor heterogeneity. This issue cannot be addressed by studying end-stage human tumors.

Methodology/Principal Findings

To address this issue, we used retroviruses to deliver transforming genetic lesions to glial progenitors in adult mouse brain. We compared the resulting tumors to human GBM. We found that different initiating genetic lesions gave rise to tumors with different growth rates. However all mouse tumors closely resembled the human Proneural GBM. Comparative analysis of these mouse tumors allowed us to identify a set of genes whose expression in humans with Proneural GBM correlates with survival.

Conclusions/Significance

This study offers insights into the relationship between adult glial progenitors and Proneural GBM, and allows us to identify molecular alterations that lead to more aggressive tumor growth. In addition, we present a new preclinical model that can be used to test treatments directed at a specific type of GBM in future studies.  相似文献   

3.
Mutations in either of two tumor suppressor genes, TSC1 or TSC2, cause tuberous sclerosis complex (TSC), a syndrome resulting in benign hamartomatous tumors and neurological disorders. Cellular growth defects and neuronal disorganization associated with TSC are believed to be due to upregulated TOR signaling. We overexpressed Rheb, an upstream regulator of TOR, in two different subsets of D. melanogaster central brain neurons in order to upregulate the Tsc-Rheb-TOR pathway. Overexpression of Rheb in either the mushroom bodies or the insulin producing cells resulted in enlarged axon projections and cell bodies, which continued to increase in size with prolonged Rheb expression as the animals aged. Additionally, Rheb overexpression in the mushroom bodies resulted in deficiencies in 3 hr but not immediate appetitive memory. Thus, Rheb overexpression in the central brain neurons of flies causes not only morphological phenotypes, but behavioral and aging phenotypes that may mirror symptoms of TSC.  相似文献   

4.
The malignant growth of glial support cells causes gliomas, highly invasive, primary brain tumors that are largely resistant to therapy. Individual tumor cells spread by active cell migration, invading diffusely into the normal brain. This process is facilitated by Cl channels that endow glioma cells with an enhanced ability to quickly adjust their shape and cell volume to fit the narrow and tortuous extracellular brain spaces. Once satellite tumors enlarge, their growth is limited by the spatial constraints imposed by the bony cavity of the skull and spinal column. Glioma cells circumvent this limitation by active destruction of peritumoral neural tissue through the release of glutamate, inducing peritumoral seizures and ultimately excitotoxic neuronal cell death. Hence, primary brain tumors support their unusual biology by taking advantage of ion channels and transporters that are designed to support ion homeostatic functions in normal brain.  相似文献   

5.
Studies initiated to determine the expression of CYP1A1/1A2 isoenzymes in the primary cultures of rat brain neuronal and glial cells revealed significant activity of CYP1A-dependent 7-ethoxyresorufin-o-dealkylase (EROD) in microsomes prepared from both rat brain neuronal and glial cells. RT-PCR and immunocytochemical studies demonstrated constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes in cultured neuronal and glial cells. Cultured neurons exhibited relatively higher constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes, associated with higher activity of EROD than the glial cells. Induction studies with 3-methylchlorantherene (MC), a known CYP1A-inducer, resulted in significant concentration dependent increase in the activity of EROD in cultured rat brain cells with glial cells exhibiting a greater magnitude of induction than the neuronal cells. This difference in the increase in enzyme activity was also observed with RT-PCR and immunocytochemical studies, indicating relatively higher increase in CYP1A1 and 1A2 mRNA as well as protein expression in the cultured glial cells when compared to the neuronal cells. The greater magnitude of induction of CYP1A1 in glial cells is of significance, as these cells are components of the blood-brain barrier and it is suggested that they have a potential role in the toxication-detoxication mechanism. Our data indicating differences in the expression and sensitivity of CYP1A1 isoenzymes in cultured rat brain cells will not only help in identifying and distinguishing xenobiotic metabolizing capability of these cells but also in understanding the vulnerability of these specific cell types towards neurotoxicants.  相似文献   

6.
1. UDPgalactose:glycoprotein galactosyltransferase (EC 2.4.1.-) activity was demonstrated in homogenates from whole rat brain, isolated neuromal perikarya, enriched glial cell fractions, and cultured rat glial tumor cells (clone C6). 2. Galactosyltransferase activity was enriched 3-9-fold in neuronal perikarya and 1.4--1.8-fold in the glial cell fraction over the activity in whole brains from 19- and 40-day-old rats. The activity of galactosyltransferase in neuronal perikarya decreased with age. Extensive contamination of the glial cell fraction with membranous fragments appeared to obscure the precise specific activity of this fraction. 3. The specific activity of the enzyme in glial tumor cells was 4--8-fold higher than in brain tissue when the enzyme was assayed under identical conditions using endogenous and different exogenous acceptors. 4. Galactosyltransferase activities from adult brain and glial tumor cells had similar properties. They both required Mn-2 plus and Triton, and exhibited pH optima between 5 and 7. The apparent Km of the enzyme for UDPgalactose was 1.3-10-minus 4 M for brain tissue and 2.2-10-minus 4 M for glial tumor cells. 5. The high galactosyltransferase activity in glial tumor cells and in neuronal perikarya of younger rats is compatible with the possibility of a role of this enzyme in developing brain.  相似文献   

7.
Loss of either lgl or brat gene activity in Drosophila larvae causes neoplastic brain tumors. Fragments of tumorous brains from either mutant transplanted into adult hosts over-proliferate, and kill their hosts within 2 weeks. We developed an in vivo assay for the metastatic potential of tumor cells by quantifying micrometastasis formation within the ovarioles of adult hosts after transplantation and determined that specific metastatic properties of lgl and brat tumor cells are different. We detected micrometastases in 15.8% of ovarioles from wild type host females 12 days after transplanting lgl tumor cells into their abdominal cavities. This frequency increased significantly with increased proliferation time. We detected micrometastases in 15% of ovarioles from wild type host females 10 days after transplanting brat tumor cells into their abdominal cavities. By contrast, this frequency did not change significantly with increased proliferation time. We found that nearly all lgl micrometastases co-express the neuronal cell marker, ELAV, and the glial cell marker, REPO. These markers are not co-expressed in normal brain cells nor in tumorous brain cells. This indicates deregulated gene expression in these metastatic cells. By contrast, most of the brat micrometastases expressed neither marker. While mutations in both lgl and brat cause neoplastic brain tumors, our results reveal that metastatic cells arising from these tumors have quite different properties. These data may have important implications for the treatment of tumor metastasis.  相似文献   

8.
9.
The differential cellular expression of class III beta-tubulin isotype (betaIII) is reviewed in the context of human embryological development and neoplasia. As compared to somatic organs and tissues, betaIII is abundant in the central and peripheral nervous systems (CNS and PNS) where it is prominently expressed during fetal and postnatal development. As exemplified in cerebellar and sympathoadrenal neurogenesis, the distribution of betaIII is neuron-associated, exhibiting distinct temporospatial gradients according to the regional neuroepithelia of origin. However, transient expression of this protein is also present in the subventricular zones of the CNS comprising putative neuronal- and/or glial precursor cells, as well as in Kulchitsky neuroendocrine cells of the fetal respiratory epithelium. This temporally restricted, potentially non-neuronal expression may have implications in the identification of presumptive neurons derived from embryonic stem cells. In adult tissues, the distribution of betaIII is almost exclusively neuron-specific. Altered patterns of expression are noted in cancer. In "embryonal"- and "adult-type" neuronal tumors of the CNS and PNS, betaIII is associated with neuronal differentiation and decreased cell proliferation. In contrast, the presence of betaIII in gliomas and lung cancer is associated with an ascending histological grade of malignancy. Thus, betaIII expression in neuronal tumors is differentiation-dependent, while in non-neuronal tumors it is aberrant and/or represents "dedifferentiation" associated with the acquisition of progenitor-like phenotypic properties. Increased expression in various epithelial cancer cell lines is associated with chemoresistance to taxanes. Because betaIII is present in subpopulations of neoplastic, but not in normal differentiated glial or somatic epithelial cells, the elucidation of mechanisms responsible for the altered expression of this isotype may provide insights into the role of the microtubule cytoskeleton in tumorigenesis and tumor progression.  相似文献   

10.
Distribution of the mixed function oxidases (MFO's) catalyzed by presence of multiple forms of cytochrome P-450 (P-450) was investigated in the neuronal and glial cells of the brain. The neuronal cells exhibited 2-3 fold higher activity of P-450 dependent arylhydrocarbon hydroxylase (AHH), 7-ethoxycoumarin-o-deethylase (ECOD) and 7-ethoxy-resorufn-o-deethylase (EROD) than the glial cells. Pretreatment with phenobarbital (PB) significantly increased (60-85%) the activity of ECOD in neuronal and glial cells, while a 140% increase was observed in neuronal AHH activity. Exposure to 3-methylcholanthrene (MC) resulted in a significant induction of the activity of AHH (102-345%), ECOD (115-150%) and EROD (75-120%) in the neuronal and glial cell preparations. The neurons, in general, exhibited greater sensitivity towards PB and MC induction. The present data indicate the differential sensitivity of these enzymes in neuronal and glial cells which could be used as a model to understand the selective action of certain neurotoxic agents.  相似文献   

11.
The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.  相似文献   

12.
Summary Monocyte-mediated tumoricidal activity, tumor necrosis factor (TNF) secretion and gene expression were examined in astrocytoma patients, patients with other types of brain tumors (primary or metastatic), and normal individuals. The spontaneous monocyte-mediated tumoricidal activity of either patient group against an astrocytoma cell line was significantly greater than normal. There was no difference between patient groups. When monocytes were stimulated with lipopolysaccharide in vitro, tumoricidal activity increased in all patient groups. Patient monocyte activity tested shortly (48 h) after surgery was not different from that before surgery. Both spontaneous and stimulated monocyte cytocidal activities were tumor-cell-restricted: melanoma and astrocytoma cells were equally susceptible but non-neoplastic glial cells were not affected. Examination of monocyte TNF secretion and mRNA expression indicated that patient activity was comparable to or greater than normal. These results demonstrate that, despite steroid therapy, circulating monocytes in astrocytoma and other brain tumor patients retain intact functional activity.Supported in part by grant CA-49 950 from the National Cancer Institute (B.P.B) and grant 1454-HL from the National Institutes of Health (M.L.E.)  相似文献   

13.
The neural stem cells that give rise to the neural lineages of the brain can generate their progeny directly or through transit amplifying intermediate neural progenitor cells (INPs). The INP-producing neural stem cells in Drosophila are called type II neuroblasts, and their neural progeny innervate the central complex, a prominent integrative brain center. Here we use genetic lineage tracing and clonal analysis to show that the INPs of these type II neuroblast lineages give rise to glial cells as well as neurons during postembryonic brain development. Our data indicate that two main types of INP lineages are generated, namely mixed neuronal/glial lineages and neuronal lineages. Genetic loss-of-function and gain-of-function experiments show that the gcm gene is necessary and sufficient for gliogenesis in these lineages. The INP-derived glial cells, like the INP-derived neuronal cells, make major contributions to the central complex. In postembryonic development, these INP-derived glial cells surround the entire developing central complex neuropile, and once the major compartments of the central complex are formed, they also delimit each of these compartments. During this process, the number of these glial cells in the central complex is increased markedly through local proliferation based on glial cell mitosis. Taken together, these findings uncover a novel and complex form of neurogliogenesis in Drosophila involving transit amplifying intermediate progenitors. Moreover, they indicate that type II neuroblasts are remarkably multipotent neural stem cells that can generate both the neuronal and the glial progeny that make major contributions to one and the same complex brain structure.  相似文献   

14.
Defects in human leukocyte antigen class I antigen processing machinery (APM) component expression can have a negative impact on the clinical course of tumors and the response to T cell-based immunotherapy. Since brain metastases of breast cancer are of increasing clinical significance, the APM component expression levels and CD8(+) T cell infiltration patterns were analyzed in primary breast and metastatic brain lesions of breast cancer by immunohistochemistry. Comparison of unpaired 50 primary and 33 brain metastases showed lower expression of β2-microglobulin, transporter associated with antigen processing (TAP) 1, TAP2 and calnexin in the brain lesions. Although no significant differences were found in APM component scores between primary breast and brain lesions in 15 paired cases, primary breast lesions of which patients eventually developed brain metastases showed lower levels of β2-microglobulin, TAP1 and calnexin compared with breast lesions without known brain metastases. The extent of CD8(+) T cell infiltration was significantly higher in the lesions without metastasis compared with the ones with brain metastases, and was positively associated with the expression of TAP1 and calnexin. Furthermore, mouse tumor cells stably transfected with silencing hairpin (sh)RNA for TAP1 demonstrated a decreased susceptibility to cytotoxic T lymphocytes in vitro and enhanced spontaneous brain metastasis in vivo. These data support the functional significance of TAP1 expression in tumor cells. Taken together, our data suggest that patients with low or defective TAP1 or calnexin in primary breast cancers may be at higher risks for developing brain metastasis due to the defects in T cell-based immunosurveillance.  相似文献   

15.
Hypoxia/reoxygenation (H/R) elicits neuronal cell injury and glial cell activation within the central nervous system (CNS). Neuroinflammation is a process that primarily results from the acute or chronic activation of glial cells. This overactive state of glial cells results in the increased release of nitric oxide (NO) and/or tumor necrosis factor alpha (TNF-alpha), a process which can lead to neuronal damage or death. In this study, we found that hypoxia for eight or twelve hours (h) followed by 24 h reoxygenation (H8/ R24 or H12/R24) induced NO production and TNF-alpha release from cultures of enriched microglial or mixed glial cells. However, microglial cells could not survive longer periods of hypoxia (> or = 12 h) in microglia-enriched culture. While astrocytes retained a 95% viability following longer periods of H/R in astrocyte-enriched cultures, they did not produce any significant quantities of NO and TNF-alpha. Reoxygenation for prolonged periods (three and five days) following H24 resulted in progressively greater increases in NO production (about two-fold greater level in hypoxia as compared to normoxic conditions) accompanied by relatively less increases in TNF-alpha release in mixed glial cell cultures. Our data indicate that inflammatory mediators such as NO and TNF-alpha are released from glia-enriched mix culture in response to H/R. While microglial cells are more vulnerable than astrocytes during H/R, they survive longer in the presence of astrocyte and are the major cell type producing NO and TNF-alpha. Furthermore, the TNF-alpha release precedes NO production in response to a prolonged duration of reoxygenation following hypoxia for 24 h.  相似文献   

16.
17.

Object

This study investigates the effect of tumor location on alterations of language network by brain tumors at different locations using blood oxygenation level dependent (BOLD) fMRI and group independent component analysis (ICA).

Subjects and Methods

BOLD fMRI data were obtained from 43 right handed brain tumor patients. Presurgical mapping of language areas was performed on all 43 patients with a picture naming task. All data were retrospectively analyzed using group ICA. Patents were divided into three groups based on tumor locations, i.e., left frontal region, left temporal region or right hemisphere. Laterality index (LI) was used to assess language lateralization in each group.

Results

The results from BOLD fMRI and ICA revealed the different language activation patterns in patients with brain tumors located in different brain regions. Language areas, such as Broca’s and Wernicke’s areas, were intact in patients with tumors in the right hemisphere. Significant functional changes were observed in patients with tumor in the left frontal and temporal areas. More specifically, the tumors in the left frontal region affect both Broca’s and Wernicke’s areas, while tumors in the left temporal lobe affect mainly Wernicke’s area. The compensated activation increase was observed in the right frontal areas in patients with left hemisphere tumors.

Conclusion

Group ICA provides a model free alternative approach for mapping functional networks in brain tumor patients. Altered language activation by different tumor locations suggested reorganization of language functions in brain tumor patients and may help better understanding of the language plasticity.  相似文献   

18.

Background

Death due to cerebral stroke afflicts a large number of neuronal populations, including glial cells depending on the brain region affected. Drugs with a wide cellular range of protection are needed to develop effective therapies for stroke. Human alpha 1-antitrypsin (hAAT) is a serine proteinase inhibitor with potent anti-inflammatory, anti-apoptotic and immunoregulatory activities. This study aimed to test whether hAAT can protect different kind of neurons and glial cells after the oxygen and glucose deprivation (OGD).

Methods

Addition of hAAT to mouse neuronal cortical, hippocampal and striatal cultures, as well as glial cultures, was performed 30?min after OGD induction and cell viability was assessed 24?h later. The expression of different apoptotic markers and several inflammatory parameters were assessed by immunoblotting and RT-PCR.

Results

hAAT had a concentration-dependent survival effect in all neuronal cultures exposed to OGD, with a maximal effect at 1–2?mg/mL. The addition of hAAT at 1?mg/mL reduced the OGD-mediated necrotic and apoptotic death in all neuronal cultures. This neuroprotective activity of hAAT was associated with a decrease of cleaved caspase-3 and an increase of MAP2 levels. It was also associated with a reduction of pro-inflammatory cytokines protein levels and expression, increase of IL-10 protein levels and decrease of nuclear localization of nuclear factor-kappaB. Similar to neurons, addition of hAAT protected astrocytes and oligodendrocytes against OGD-induced cell death.

Conclusions

Human AAT protects neuronal and glial cells against OGD through interaction with cytokines.

General significance

Human AAT could be a good therapeutic neuroprotective candidate to treat ischemic stroke.  相似文献   

19.
20.
Peroxisomes are now recognized to play important cellular functions and its dysfunction leads to a group of neurological disorders. This study reports peroxisomal enzyme activities in cultured glial cells and peroxisomes isolated from cultured oligodendrocytes and C6 glial cells. Peroxisomal enzyme activities were found to be higher in oligodendroglial cells than in astrocytes or mixed glial cells. We also developed a method for the isolation of peroxisomes from glial cells by a combination of differential and density gradient centrifugation techniques. Peroxisomes from oligodendrocytes in nycodenz gradient were isolated at a density of 1.165 g/ml ± 0.011. Activities of dihydroxyacetone phosphate acyl transferase, -oxidation of lignoceric acid and -oxidation of phytanic acid were almost exclusively associated with the distribution of catalase activity (a marker enzyme for peroxisomes) in the gradient. This protocol should be a resource for studies designed to investigate the structure and function of peroxisomes in brain cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号