首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tundra ecosystems are widely recognized as precious areas and globally important carbon (C) sinks, yet our understanding of potential threats to these habitats and their large soil C store is limited. Land‐use changes and conservation measures in temperate regions have led to a dramatic expansion of arctic‐breeding geese, making them important herbivores of high‐latitude systems. In field experiments conducted in high‐Arctic Spitsbergen, Svalbard, we demonstrate that a brief period of early season belowground foraging by pink‐footed geese is sufficient to strongly reduce C sink strength and soil C stocks of arctic tundra. Mechanisms are suggested whereby vegetation disruption due to repeated use of grubbed areas opens the soil organic layer to erosion and will thus lead to progressive C loss. Our study shows, for the first time, that increases in goose abundance through land‐use change and conservation measures in temperate climes can dramatically affect the C balance of arctic tundra.  相似文献   

2.
Herbivory can lead to shifts in ecosystem state or changes in ecosystem functioning, and recovery from herbivory is particularly slow in disturbance-sensitive ecosystems such as arctic tundra. Herbivore impacts on ecosystems are variable in space and time due to population fluctuations and selective utilization of habitats; thus there is a need to accurately predict herbivore impacts at the landscape scale. The habitat utilization and extent of disturbance caused by increasing populations of pink-footed geese (Anser brachyrhynchus) foraging in the high arctic tundra of Svalbard were assessed using a predictive model of the population’s habitat use. Pink-footed geese arrive in Svalbard in early spring when they forage for belowground plant parts; this foraging (called grubbing) can cause vegetation loss and soil disturbance. Surveys of the extent and intensity of grubbing were carried out to develop predictive models that were subsequently tested against data collected during the following year from different areas. Both habitat type at a particular point and the amount of preferred fen habitat in the surrounding area were powerful predictors of grubbing likelihood and the developed model correctly classified over 69% of validation observations with an AUC of 0.75. Pink-footed geese showed a strong preference for wetter habitats within low-lying landscapes. Extrapolation of the predictive model across the archipelago showed that a maximum potential area of 2300 km2 (3.8% of the archipelago) could be disturbed by grubbing. Thus, increasing populations of geese may cause large-scale vegetation loss and soil disturbance in arctic ecosystems.  相似文献   

3.
This paper presents results from a multidisciplinary study of a negotiation process between farmers and wildlife authorities which led to an agricultural subsidy scheme to alleviate conflicts between agriculture and geese in Norway. The Svalbard-breeding population of pink-footed geese Anser brachyrhynchus has increased considerably over the last decades and conflicts with farmers have escalated, especially at stopover sites in spring when geese feed on newly sprouted pasture grass. In Vesterålen, an important stopover site for geese in North Norway, farmers deployed scaring of geese at varying intensity dependent on the level of conflict during 1988–2012. We assessed the efficiency of a subsidy scheme established in 2006, in terms of its conflict mitigation, reflected in a near discontinuation of scaring activities. The presence of pink-footed geese was analysed in relation to scaring intensity, the total goose population size and the increasing occurrence of another goose species, the barnacle goose Branta leucopsis. Scaring significantly affected the number of geese staging in Vesterålen, both in absolute and relative terms (controlling for total population size). The geese responded immediately to an increased, and reduced, level of scaring. Despite the establishment of the subsidy scheme, the number of pink-footed geese has recently declined which is probably caused by the increasing number of barnacle geese. For the farmers, the subsidy scheme provides funding that reduces the economic costs caused by the geese. Sustaining a low level of conflict will require close monitoring, dialogue and adaptation of the subsidy scheme to cater for changes in goose population dynamics.  相似文献   

4.
Herbivores can shape plant communities, especially in the Arctic. We tested the role of geese for structuring bryophyte communities at fine spatial scales in the arctic tundra by excluding them from 4 × 4 m areas. We surveyed the presence and absence of bryophyte species in quadrats (10 × 10 cm) divided into 25 cells outside and inside these exclosures, after 5 and 11 years of treatment. Species richness per cell (4 cm2) was higher in the presence of geese, especially after 11 years of treatment, while geese had little effect on richness at larger scales (i.e. quadrat and whole exclosure). The slope of the species–area relationship within quadrats was consequently shallower outside exclosures. Our results further suggest that the community outside the exclosures was more variable in space and time than that inside the exclosures. We conclude that goose foraging activity promotes the coexistence of bryophyte species at the centimetre scale.  相似文献   

5.
In the high-arctic archipelago of Svalbard, the pink-footed goose (Anser brachyrhynchus) population has increased dramatically over the last decades. The population increase and the corresponding range expansion suggest a substantial increase in the potential for disturbance of the tundra caused by goose herbivory. In this study, we used surveys of pink-footed goose grubbing from two separate years (2007 and 2012) to examine the temporal changes in the prevalence of grubbing in central Spitsbergen. During this time period, the Svalbard-breeding pink-footed goose population had increased from 56,400 to 80,000 individuals. We compared grubbing prevalence between the 2 years, standardising the comparison by using a published model of habitat suitability for grubbing (Speed et al. in Ecosystems 12:349-359, 2009) as a covariate. Habitat suitability was a significant predictor of grubbing prevalence across both years, with higher grubbing probability in habitats predicted to be more suitable for grubbing. The probability of grubbing was on average 4 times higher in 2012 than in 2007. In 2007, all tundra habitats had a probability of <27 % of being grubbed whilst in 2012, there was a probability for being grubbed of more than 34 % in the least suitable habitat and around 59 % in the most suitable habitat. The increase in grubbing prevalence demonstrates a great need for monitoring the expanding pink-footed goose population and its impact on the tundra landscape.  相似文献   

6.
The feeding ecology of barnacle geese and pink-footed geese was studied in Sassendalen, Svalbard during the pre-nesting period (late May) to assess the potential for inter-specific competition. Barnacle geese fed almost exclusively (97%) by grazing above-ground plant material, mostly (79%) along snow edges in moss-mat habitats. Pink-footed geese fed mostly (93%) by excavating below-ground parts of plants, mostly (56%) away from snow and were more evenly distributed between habitat types. Barnacle goose faeces contained mostly (62%) moss, that of pink-footed geese mostly (48%) below-ground plant storage organs (especially Bistorta viviparum L.). Principal components analysis of dropping contents showed no overlap in species diet in allopatry or sympatry. There was little overlap in diet and feeding ecology of the two species at this pre-nesting feeding site. Hence, unless increased goose feeding densities affect future vegetation density and composition, under present circumstances, increasing numbers of either species is unlikely to affect foraging conditions for the other at this important stage in the annual cycle. However, such changes could have local density-dependent intra-specific effects.  相似文献   

7.
East Asian migratory waterfowl have greatly declined since the 1950s, especially the populations that winter in China. Conservation is severely hampered by the lack of primary information about migration patterns and stopover sites. This study utilizes satellite tracking techniques and advanced spatial analyses to investigate spring migration of the greater white‐fronted goose (Anser albifrons) and tundra bean goose (Anser serrirostris) wintering along the Yangtze River Floodplain. Based on 24 tracks obtained from 21 individuals during the spring of 2015 and 2016, we found that the Northeast China Plain is far‐out the most intensively used stopover site during migration, with geese staying for over 1 month. This region has also been intensely developed for agriculture, suggesting a causal link to the decline in East Asian waterfowl wintering in China. The protection of waterbodies used as roosting area, especially those surrounded by intensive foraging land, is critical for waterfowl survival. Over 90% of the core area used during spring migration is not protected. We suggest that future ground surveys should target these areas to confirm their relevance for migratory waterfowl at the population level, and core roosting area at critical spring‐staging sites should be integrated in the network of protected areas along the flyway. Moreover, the potential bird–human conflict in core stopover area needs to be further studied. Our study illustrates how satellite tracking combined with spatial analyses can provide crucial insights necessary to improve the conservation of declining Migratory species.  相似文献   

8.
We examined how large seasonal influxes of migratory prey influenced population dynamics of arctic foxes and how this varied with fluctuations in small mammal (lemming and vole) abundance—the main prey of arctic foxes throughout most of their range. Specifically, we compared how arctic fox abundance, breeding density and litter size varied inside and outside a large goose colony and in relation to annual variation in small mammal abundance. Information-theoretic model selection showed that (1) breeding density and fox abundance were 2–3 times higher inside the colony than they were outside the colony and (2) litter size, breeding density and annual variation in fox abundance in the colony tracked fluctuations in lemming abundance. The influence of lemming abundance on reproduction and abundance of arctic foxes outside the colony was inconclusive, largely because fox densities outside the colony were low, which made it difficult to detect such relationships. Lemming abundance was, thus, the main factor governing reproduction and abundance of arctic foxes in the colony, whereas seasonal influxes of geese and their eggs provided foxes with external subsidies that elevated breeding density and fox abundance above that which lemmings could support. This study highlights (1) the relative importance of migratory prey and other foods on the abundance and reproduction by local consumers and (2) how migratory animals function as vectors of nutrient transfer between distant ecosystems such as Arctic environments and wintering areas by geese thousands of kilometres to the south.  相似文献   

9.
ABSTRACT In an effort to reduce goose depredation at a traditional spring migratory stopover site, private landowners implemented a coordinated hazing plan to scare Aleutian cackling geese (Branta hutchinsii leucopareia) from private lands to adjacent public pastures that were cultivated and set aside specifically for geese. Coincidentally, some Aleutian geese began using a new stopover site 150 km farther south in their spring migratory range; numbers at the new site continue to increase. We tested the idea that when their ability to acquire resources deteriorates geese are likely to seek improved foraging conditions, especially during spring migration when individuals strive to maximize nutrient stores and minimize energy expenditure. We quantified measures of goose foraging performance in traditional and new spring staging sites by calculating foraging opportunity, foraging effort, body condition, and daily energy expenditure. Geese staging at the site with higher levels of human disturbance had less foraging opportunity and, despite increased foraging effort and more nutritious food-plants at the site, birds there experienced an elevated energy expenditure and poorer body condition than birds at the new stopover site. Reduced foraging time and increased energy expenditure at the traditional spring staging site may have triggered the colonization process. Suitability assessment of habitat for migratory geese should include measures of foraging opportunity, disturbance risks, and daily energy expenditure in addition to quantity and quality of foods.  相似文献   

10.
Feeding on farmland by overwintering populations of pink-footed geese ( Anser brachyrhynchus ) conflicts with agricultural interests in Northern Europe. In order to forecast the potential future of this conflict, we used generalized linear models to relate the presence and absence of pink-footed geese to variables describing the contemporary landscape, and predicted their future distributions in relation to two land-use scenarios for the year 2050. One future scenario represented a global, economically orientated world (A1) and the other represented a regional, environmentally concerned world (B2). The probability of goose occurrence increased within cropland and grassland, and could be explained by their proximity to coast, elevation, and the degree of habitat closure. Predictions to future scenarios revealed noticeable shifts in the suitability of goose habitat evident at the local and regional scale in response to future shifts in land use. In particular, as grasslands and croplands give way to unsuitable land-use types (e.g. woody biofuel crops, increased urbanization, and forest) under both future scenarios, our models predicted a decrease in habitat suitability for geese. If coupled with continued goose population expansion, we expect that the agricultural conflict will intensify under the A1 and particularly the B2 scenarios.  相似文献   

11.
Trophic interactions in a high arctic snow goose colony   总被引:2,自引:1,他引:1  
We examined the role of trophic interactions in structuringa high arctic tundra community characterized by a large breedingcolony of greater snow geese (Chen caerulescens atlantica).According to the exploitation ecosystem hypothesis of Oksanenet al. (1981), food chains are controlled by top-down interactions.However, because the arctic primary productivity is low, herbivorepopulations are too small to support functional predator populationsand these communities should thus be dominated by the plant/herbivore trophic-level interaction. Since 1990, we have beenmonitoring annual abundance and productivity of geese, the impactof goose grazing, predator abundance (mostly arctic foxes, Alopexlagopus) and the abundance of lemmings, the other significantherbivore in this community, on Bylot Island, Nunavut, Canada.Goose grazing consistently removed a significant proportionof the standing crop (  相似文献   

12.
The Svalbard-breeding population of pink-footed geese Anser brachyrhynchus has increased during the last decades and is giving rise to agricultural conflicts along their migration route, as well as causing grazing impacts on tundra vegetation. An adaptive flyway management plan has been implemented, which will be based on predictive population models including environmental variables expected to affect goose population development, such as weather conditions on the breeding grounds. A local study in Svalbard showed that snow cover prior to egg laying is a crucial factor for the reproductive output of pink-footed geese, and MODIS satellite images provided a useful estimator of snow cover. In this study, we up-scaled the analysis to the population level by examining various measures of snow conditions and compared them with the overall breeding success of the population as indexed by the proportion of juveniles in the autumn population. As explanatory variables, we explored MODIS images, satellite-based radar measures of onset of snow melt, winter NAO index, and the May temperature sum and May thaw days. To test for the presence of density dependence, we included the number of adults in the population. For 2000–2011, MODIS-derived snow cover (available since 2000) was the strongest indicator of breeding conditions. For 1981–2011, winter NAO and May thaw days had equal weight. Interestingly, there appears to have been a phase shift from density-dependent to density-independent reproduction, which is consistent with a hypothesis of released breeding potential due to the recent advancement of spring in Svalbard.  相似文献   

13.
Studies were carried out in 2000–2007 near Medusa Bay (73°21′N, 80°32′ E) and along the Agapa River (from 70°11′N, 86°15′ E. down to the mouth 71°26′ N, 89°13′ E), in the northwestern and central parts of the Taimyr Peninsula. White-fronted goose nests are usually spread in the tundra or placed in 1–3 nest colonies near nests or staging points of snowy owls, peregrine falcons, or rough-legged buzzards. The intent of white-fronted geese to breed near birds of prey or owls increases sharply when arctic fox numbers are high. In the area near Medusa Bay, white-fronted geese nest much closer to peregrine falcon nests than in the area along the Agra River. At the latter location, white-fronted geese lose the competition to red-breasted geese, which are more numerous here. Bean geese, in spite of their greater size and ability to protect their nests against arctic foxes, really tend to breed near peregrine falcons or buzzards, where they manage to compete with red-breasted geese.  相似文献   

14.
  • 1.Following targeted conservation actions most goose populations have increased. The growing goose populations caused an increase in human-wildlife conflicts and have the potential to affect nature values. As meadow birds, including meadow-breeding waders, were declining throughout Western Europe, the possible negative effect of rising numbers of foraging barnacle geese on their breeding success has been questioned.
  • 2.We used GPS-transmitter data to measure the density of foraging barnacle geese during daylight hours. Using dynamic Brownian Bridge Movement Models (dBBMM), we investigated the effect of barnacle goose density on the territory distribution of five wader species, and on nest success of the locally common Northern lapwing. We used model selection methods to identify the importance of barnacle goose density related to other environmental factors.
  • 3.Our results showed an insignificant positive association between barnacle goose density and nest territory density of the Northern lapwing and common redshank. Barnacle goose density had no influence on territory selection of godwit, oystercatcher and ringed plover. We did, however, find a negative correlation between barnacle geese density and the nest success of the Northern Lapwing.
  • 4.We infer that either barnacle goose foraging leads to improved territory conditions for some wader species, or that both barnacle geese and waders prefer the same type of habitat for foraging and nesting. Higher barnacle goose density was correlated with fewer Northern lapwing nests being successful.
  • 5.Synthesis and application: Experimental research is needed to disentangle the causal chain, but based on our observational findings, we suggest to increase water logging that may attract both barnacle geese and wader species. Further investigation on the effects of barnacle geese on wader species is necessary to identify the cause of the negative correlation between barnacle geese density and nest success of lapwings; nest protection experiments could give further insight.
  相似文献   

15.
Rising atmospheric CO2 is intensifying climate change but it is also driving global and particularly polar greening. However, most blue carbon sinks (that held by marine organisms) are shrinking, which is important as these are hotspots of genuine carbon sequestration. Polar blue carbon increases with losses of marine ice over high latitude continental shelf areas. Marine ice (sea ice, ice shelf and glacier retreat) losses generate a valuable negative feedback on climate change. Blue carbon change with sea ice and ice shelf losses has been estimated, but not how blue carbon responds to glacier retreat along fjords. We derive a testable estimate of glacier retreat driven blue carbon gains by investigating three fjords in the West Antarctic Peninsula (WAP). We started by multiplying ~40 year mean glacier retreat rates by the number of retreating WAP fjords and their time of exposure. We multiplied this area by regional zoobenthic carbon means from existing datasets to suggest that WAP fjords generate 3,130 tonnes of new zoobenthic carbon per year (t zC/year) and sequester >780 t zC/year. We tested this by capture and analysis of 204 high resolution seabed images along emerging WAP fjords. Biota within these images were identified to density per 13 functional groups. Mean stored carbon per individual was assigned from literature values to give a stored zoobenthic Carbon per area, which was multiplied up by area of fjord exposed over time, which increased the estimate to 4,536 t zC/year. The purpose of this study was to establish a testable estimate of blue carbon change caused by glacier retreat along Antarctic fjords and thus to establish its relative importance compared to polar and other carbon sinks.  相似文献   

16.
1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3.5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.  相似文献   

17.
In pink-footed goose (Anser brachyrhynchus) wintering in Denmark, The Netherlands and Belgium, the proportion of juveniles in the hunting bag is consistently higher than that observed in the autumn population. Such juvenile bias in the bag is usually ascribed to young geese lacking experience with hunting or disruption of juveniles from families. An alternative explanation may be that flocking behaviour of families make juveniles more vulnerable. Observations of morning flights of pink-footed geese to the feeding grounds from two of the major autumn-staging areas showed that geese were distributed in many small flocks (median flock size = 9). This was not significantly different from the flock size distribution shot at by hunters (median = 8), suggesting that hunters targeted goose flock size in proportion to the general probability of encounter. The rate at which hunters downed geese was independent of flock size. The ratio between juveniles and adults in flocks decreased with flock size and flocks of <60 individuals primarily comprised family groups. The likelihood of being shot at was 2.4 times higher for juveniles and 3.4 times higher for older birds in small flocks (<10 individuals) compared to larger flocks. The observations suggest that both juveniles as well as successful adult breeding birds were more vulnerable than non-breeding/failed breeding birds as a result of flocking behaviour.  相似文献   

18.
The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and −0.77 μmol m−2 s−1 in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.  相似文献   

19.
Goose grazing on arctic tundra vegetation has shown both positive and negative effects on subsequent foraging conditions. To understand the potential of a density-dependent feedback on herbivore population size, the relation between grazing pressure and future foraging conditions is essential. We studied the effect of increasing grazing pressure of barnacle geese (Branta leucopsis) on Spitsbergen. During the establishment of a breeding colony in the period 1992–2004, the proportion of graminoids decreased in the diet of wild geese, while the percentage of mosses increased. Grazing trials with captive geese in an unexploited area showed a similar shift in diet composition. High-quality food plants were depleted within years and over years. Intake rate declined too and as consequence, metabolisable energy intake rate (MEIR) decreased rapidly with increasing grazing pressure. During three successive years of experimental grazing, MEIR decreased at all levels of grazing pressure and declined below minimal energetic requirements when grazing exceeded natural levels of grazing pressure. This suggests that foraging conditions rapidly decline with increasing grazing pressure in these low-productive habitats. The potential for density-dependent feedbacks on local population increase is discussed.  相似文献   

20.
The bird-lemming hypothesis postulates that breeding success of tundra-nesting geese and waders in Siberia follows the cyclic pattern of lemming populations, as a result of predators switching from lemmings to birds when the lemming population crashes. We present 50 years of data on constant-effort catches of red knot Calidris canutus and curlew sandpiper C. ferruginea at an autumn migratory stopover site (Ottenby) at the Baltic Sea, supplemented with literature data on winter censuses of dark-bellied brent goose Branta b. bernicla and white-fronted goose Anser albifrons in northwestern Europe, and waders in Germany and Southern Africa. Number and proportion of juveniles in these bird populations (both our own and literature data) were compared with an index of predation pressure (calculated from the abundance of lemmings on the Taimyr peninsula), and climate indices for the North Eurasia and the North Atlantic regions. The index of predation pressure correlated significantly with the number of juveniles of red knot and curlew sandpiper, but not with number of adults. Also, this index correlated with the reproductive performance of geese and waders reported in the literature. Fourier analysis revealed a significant deviation from random noise with the maximum spectral density at the period length of 3 years for number of juvenile red knots and curlew sandpipers captured at Ottenby, abundance of lemmings, reproduction in arctic fox Alopex lagopus, and reproductive performance in geese on the Siberian tundra. Also, the date of passage at Ottenby for adult red knot and curlew sandpiper showed a spectral density peak at a period length of 3 years, the latter species also showing a peak at a period length of 5-6 years. Passage dates for adult red knot and curlew sandpiper were earlier in years of high predation pressure compared with years of low predation pressure. The fluctuations in reproductive success of the studied Siberian goose and wader species appear to be primarily influenced by biotic factors in the breeding area, rather than by abiotic factors, such as climate oscillations. Annual variations in migratory arctic bird populations may have far reaching effects in habitats along their migration routes and in their wintering areas. We suggest a link between lemming cyclicity in the Northern Hemisphere and predation pressure on Southern Hemisphere benthos, in which the signal is carried between continents by long distance migrating waders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号