共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Expression of retinoic acid receptor genes in neural crest-derived cells during mouse facial development 总被引:2,自引:0,他引:2
Retinoic acid (RA) is known as a teratogen that induces abnormalities in facial structures which are made up mainly of neural crest-derived mesenchyme. We investigated expression patterns of RA receptor (RAR) genes (subtypes alpha, beta, gamma) during mouse facial development. The expression of the RAR beta gene is specific for the mesenchyme around developing eyes and nose, whereas the RAR gamma gene is expressed in the mesenchyme differentiating to facial cartilages and bones. In contrast, the RAR alpha gene is expressed weakly and uniformly over the facial region. These results suggest that crucial roles of endogenous RA in facial development depend on differential functions of the RAR subtypes. 相似文献
3.
In both mice and humans, mutations in the genes encoding the endothelin B receptor and its ligand endothelin 3 lead to deficiencies in neural crest-derived melanocytes and enteric neurons. The discrete steps at which endothelins exert their functions in melanocyte development were examined in mouse neural crest cell cultures. Such cultures, kept in the presence of fetal calf serum, gave rise to cells expressing the early melanoblast marker Dct even in the absence of the phorbol ester tetradecanoyl phorbol acetate (TPA) or endothelins. However, these early Dct+ cells did not proliferate and pigmented cells never formed unless TPA or endothelins were added. In fact, endothelin 2 was as potent as TPA in promoting the generation of both Dct+ melanoblasts and pigmented cells, and endothelin 1 or endothelin 3 stimulated the generation of melanoblasts and of pigmented cells to an even greater extent. The inhibition of this stimulation by the selective endothelin B receptor antagonist BQ-788 (N-cis-2,6-dimethylpiperidinocarbonyl-L-alpha-methylleucyl-D -1-methoxycarbonyltryptophanyl-D-norleucine) suggested that the three endothelins all signal through the endothelin B receptor. This receptor was indeed expressed in Dct+ melanoblasts, in addition to cells lacking Dct expression. The results demonstrate that endothelins are potent stimulators of melanoblast proliferation and differentiation. 相似文献
4.
In amniotes, the developmental potentials of neural crest cells differ between the cranium and the trunk. These differences
may be attributable to the different expression patterns of Hox genes between cranial and trunk neural crest cells. However,
little is known about the factors that control Hox genes expression in neural crest cells. The present data demonstrate that
retinoic acid (RA) treatment and the activation of Wnt signaling induce Hoxa2 and Hoxd9 expression, respectively, in mouse
mesencephalic neural crest cells, which never express Hox genes in vivo. Furthermore, Wnt signaling suppresses the induction
of Hoxa2. We also demonstrate that these factors participate in the maintenance of Hoxa2 and Hoxd9 expression in mouse trunk
neural crest cells. Our results suggest that RA and Wnt signaling function as environmental factors that regulate the expression
of Hoxa2 and Hoxd9 in mouse neural crest cells. 相似文献
5.
6.
The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived developmental anomalies are associated with altered expression of Hand2-target genes we have identified by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting expression of target genes associated with a number of functional interactions in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our genetic model has made it possible to investigate the molecular genetics of neural crest contributions to outflow tract morphogenesis and cell differentiation. 相似文献
7.
Effects of retinoic acid on the development of the facial skeleton in hamsters: early changes involving cranial neural crest cells 总被引:3,自引:0,他引:3
Treatment of gravid hamsters with 60/mg of retinoic acid on the 8th day of pregnancy resulted in facial skeleton defects in 100% of the survivors examined by alizarin staining at term. An investigation of the early stages in the development of these malformations indicated that the teratogen induced delayed and disorganized patterns of cranial neural crest cell migration as well as extensive death and damage of crest cells. The results demonstrate that retinoic acid provides a useful tool for studies in the pathogenesis of facial skeletal abnormalities in vivo. Moreover, the extensive defects seen in the teratogen-treated litters at term, together with the results of the microscopical analyses, support the hypothesis that cranial neural crest cells make an important contribution to the development of the mammalian facial skeleton. 相似文献
8.
9.
10.
Hendershot TJ Liu H Clouthier DE Shepherd IT Coppola E Studer M Firulli AB Pittman DL Howard MJ 《Developmental biology》2008,319(2):179-191
Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression. 相似文献
11.
Hox genes belonging to the Abd-B subfamily of the HoxA and HoxD clusters play a crucial role in cartilage formation both in patterning and growth/differentiation phases during limb development. We re-examined the expression profiles of Hoxa-13, Hox-d13, Hoxa-11 and Hoxd-11 during the cartilage growth/differentiation phase of limb cartilage formation. The expression profiles of these Hox genes were analyzed by in situ hybridization and immunohistochemistry on serial sections by comparing the expression patterns with well-characterized signaling molecules, e.g. Bmp-2, -4, Patched (Ptc) and Indian Hedgehog (IHH). In contrast to earlier reports, these Hox genes were expressed in the mesenchymal cell layer closely adjacent to the growing cartilage, but not in the perichondrium of the cartilage. This result prompts us to reconsider the mode of Hox function during cartilage growth and differentiation phase. 相似文献
12.
Takio Y Kuraku S Murakami Y Pasqualetti M Rijli FM Narita Y Kuratani S Kusakabe R 《Developmental biology》2007,308(2):606-620
The Hox code of jawed vertebrates is characterized by the colinear and rostrocaudally nested expression of Hox genes in pharyngeal arches, hindbrain, somites, and limb/fin buds. To gain insights into the evolutionary path leading to the gnathostome Hox code, we have systematically analyzed the expression pattern of the Hox gene complement in an agnathan species, Lethenteron japonicum (Lj). We have isolated 15 LjHox genes and assigned them to paralogue groups (PG) 1-11, based on their deduced amino acid sequences. LjHox expression during development displayed gnathostome-like spatial patterns with respect to the PG numbers. Specifically, lamprey PG1-3 showed homologous expression patterns in the rostral hindbrain and pharyngeal arches to their gnathostome counterparts. Moreover, PG9-11 genes were expressed specifically in the tailbud, implying its posteriorizing activity as those in gnathostomes. We conclude that these gnathostome-like colinear spatial patterns of LjHox gene expression can be regarded as one of the features already established in the common ancestor of living vertebrates. In contrast, we did not find evidence for temporal colinearity in the onset of LjHox expression. The genomic and developmental characteristics of Hox genes from different chordate species are also compared, focusing on evolution of the complex body plan of vertebrates. 相似文献
13.
14.
15.
16.
Coding sequence and expression of the homeobox gene Hox 1.3 总被引:15,自引:0,他引:15
M Fibi B Zink M Kessel A M Colberg-Poley S Labeit H Lehrach P Gruss 《Development (Cambridge, England)》1988,102(2):349-359
17.
Previously, we reported a zebrafish iroquois gene, ziro3, and its expression during early embryogenesis (Mech. Dev. 87 (1999) 165). In the present study, we have isolated two novel zebrafish iroquois genes, ziro1 and ziro5, homologs of mouse Irx1 and mouse Irx5, respectively. The expression of both genes is initiated in dorsal neuroectoderm and mesoderm during gastrulation. Later, their expression appears in the central nervous system (CNS), excluding the telencephalon and most of the diencephalon. ziro1 expression is complementary to that of ziro3 in the notochord and later in the gut. In contrast, ziro5 expression mostly overlaps with that of ziro3. Interestingly, all three iroquois zebrafish genes are expressed in the notochord while only Irx3 is active in the mouse notochord. Their expression in later stages of embryogenesis was also compared. 相似文献
18.
In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events. 相似文献
19.
In an effort to identify a promoter suitable for studying early ocular development, we generated transgenic mice carrying the lacZ reporter gene linked to the tyrosinase-related protein 2 (TRP2) promoter. TRP2-lacZ was expressed in early retinal pigment epithelium (RPE) and early neural crest cells in embryos. The promoter activity was robust and consistent in independent transgenic lines. The transgene was also expressed in the optic nerve and neural crest-derived neuronal cells in which the endogenous TRP2 gene is not expressed. This suggests that repressor elements may be missing in the promoter used in this study. To test whether this promoter can be used to study melanocyte development, we cross-mated TRP2-lacZ transgenic mice with mice heterozygous for the Patch (Ph) mutation. The pattern of beta-galactosidase activity in the embryos correlates well with the pigmentation phenotype in postnatal and adult Ph/+ mice. We also generated transgenic mice expressing fibroblast growth factor 9 (FGF9) directed by the TRP2 promoter and examined the effect on ocular development. Ectopic expression of FGF9 in the early embryonic RPE switched its differentiation pathway to a neuronal fate, resulting in formation of a duplicated neural retina in transgenic mice. These studies demonstrate that the TRP2 promoter is valuable for transgenic studies of ocular differentiation and development of neural crest cells. 相似文献