首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substrate depletion experiments were conducted to characterize aerobic biodegradation of 20 single polycyclic aromatic hydrocarbons (PAHs) by induced Sphingomonas paucimobilis strain EPA505 in liquid suspensions. PAHs consisted of low molecular weight, unsubstituted, and methyl-substituted homologs. A material balance equation containing the Andrews kinetic model, an extension of the Monod model accounting for substrate inhibition, was numerically fitted to batch depletion data to estimate extant kinetic parameters including the maximal specific uptake rates, q(max), the affinity coefficients, K(S), and the substrate inhibition coefficients, K(I). Strain EPA505 degraded all PAHs tested. Applied kinetic models adequately simulated experimental data. A cell proliferation assay involving reduction of the tetrazolium dye WST-1 was used to evaluate the ability of strain EPA505 to utilize individual PAHs as sole energy and carbon sources. Of the 22 PAHs tested, 9 supported bacterial growth. Evaluation of the biokinetic data showed that q(max) correlated highly with transmembrane flux as theoretically estimated by a diffusion model, pointing to transmembrane transport as a potential rate-determining process. The biodegradability data generated in this study is essential for the development of quantitative structure-activity relationships (QSARs) for biodegradability and for modeling biodegradation of simple PAH mixtures.  相似文献   

2.
Three efficient Cr(VI) reducing bacterial strains were isolated from Cr(VI) polluted landfill and characterized for in vitro Cr(VI) reduction. Phylogenetic analysis using 16S rRNA gene sequencing revealed that the newly isolated strains G1DM20, G1DM22 and G1DM64 were closely related to Bacillus cereus, Bacillus fusiformis and Bacillus sphaericus, respectively. The suspended cultures of all Bacillus sp. exhibited more than 85% reduction of 1000 microM Cr(VI) within 30 h. The suspended culture of Bacillus sp. G1DM22 exhibited an ability for continuous reduction of 100 microM Cr(VI) up to seven consecutive inputs. Assays with the permeabilized cells and cell-free extracts from each of Bacillus sp. demonstrated that the hexavalent chromate reductase activity was mainly associated with the soluble fraction of cells and expressed constitutively. The Cr(VI) reduction by the cell-free extracts of Bacillus sp. G1DM20 and G1DM22 was maximum at 30 degrees C and pH 7 whereas, Bacillus sp. G1DM64 exhibited maximum Cr(VI) reduction at pH 6. Addition of 1mM NADH enhanced the Cr(VI) reductase activity in the cell-free extracts of all three isolates. Amongst all three isolates tested, crude cell-free extracts of Bacillus sp. G1DM22 exhibited the fastest Cr(VI) reduction rate with complete reduction of 100 microM Cr(VI) within 100 min. The apparent K(m) and V(max) of the chromate reductase activity in Bacillus sp. G1DM22 were determined to be 200 microM Cr(VI) and 5.5 micromol/min/mg protein, respectively. The Cr(VI) reductase activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg(2+) and Ag(+).  相似文献   

3.
Reduction of hexavalent chromium was studied in three bench-scale continuous stirred tank reactors. The inoculum was a culture of Pseudomonas sp., capable of giving 83% to 87% chromate reduction in 72-h batch assays with 60 mg Cr(VI) L(-1) in synthetic medium. The continuous culture studies were conducted for about 100 days using synthetic feed containing different levels of chromate (5 to 124 mg L(-1)) at 28 degrees to 30 degrees C and pH 6.8. The feed rate was varied over the range 0.5 to 1 L d(-1) to obtain hydraulic retention time of 36 to 72 h. Chromate reduction efficiency was 81% to 91% and 100% for influent Cr(VI) concentrations of 15 to 124 and 5 mg L(-1), respectively, with a hydraulic retention time of 72 h. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
A soil bacterium capable of utilizing fluoranthene as the sole source of carbon and energy for growth was purified from a seven-member bacterial community previously isolated from a creosote waste site for its ability to degrade polycyclic aromatic hydrocarbons. By standard bacteriological methods, this bacterium was characterized taxonomically as a strain of Pseudomonas paucimobilis and was designated strain EPA505. Utilization of fluoranthene by strain EPA 505 was demonstrated by increase in bacterial biomass, decrease in aqueous fluoranthene concentration, and transient formation of transformation products in liquid cultures where fluoranthene was supplied as the sole carbon source. Resting cells grown in complex medium showed activity toward anthraquinone, benzo[b]fluorene, biphenyl, chrysene, and pyrene as demonstrated by the disappearance of parent compounds or changes in their UV absorption spectra. Fluoranthene-grown resting cells were active against these compound as well as 2,3-dimethylnaphthalene, anthracene, fluoranthene, fluorene, naphthalene, and phenanthrene. These studies demonstrate that organic compounds not previously reported to serve as growth substrates can be utilized by axenic cultures of microorganisms. Such organisms may possess novel degradative systems that are active toward other compounds whose biological degradation has been limited because of inherent structural considerations or because of low aqueous solubility.  相似文献   

5.
A soil bacterium capable of utilizing fluoranthene as the sole source of carbon and energy for growth was purified from a seven-member bacterial community previously isolated from a creosote waste site for its ability to degrade polycyclic aromatic hydrocarbons. By standard bacteriological methods, this bacterium was characterized taxonomically as a strain of Pseudomonas paucimobilis and was designated strain EPA505. Utilization of fluoranthene by strain EPA 505 was demonstrated by increase in bacterial biomass, decrease in aqueous fluoranthene concentration, and transient formation of transformation products in liquid cultures where fluoranthene was supplied as the sole carbon source. Resting cells grown in complex medium showed activity toward anthraquinone, benzo[b]fluorene, biphenyl, chrysene, and pyrene as demonstrated by the disappearance of parent compounds or changes in their UV absorption spectra. Fluoranthene-grown resting cells were active against these compound as well as 2,3-dimethylnaphthalene, anthracene, fluoranthene, fluorene, naphthalene, and phenanthrene. These studies demonstrate that organic compounds not previously reported to serve as growth substrates can be utilized by axenic cultures of microorganisms. Such organisms may possess novel degradative systems that are active toward other compounds whose biological degradation has been limited because of inherent structural considerations or because of low aqueous solubility.  相似文献   

6.

Background  

Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by Bacillus cereus SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence.  相似文献   

7.
Chromate resistant and reducing strains were isolated from chromium contaminated soil and identified as Bacillus sp. (KCH2 and KCH3), Leucobacter sp. (KCH4) and Exiguobacterium sp. (KCH5). KCH3 and KCH4 showed higher Cr(VI) tolerance (2 mM) and Cr(VI) reduction (1.5 mM) than KCH5 (1.5 mM and 0.75 mM, respectively). Cr(VI) reduction by CFEs of KCH3 and KCH4 showed NAD(P)H dependence, optimum activity at pH 5.5, low K(m) (45-55 microM) and substrate inhibition by Cr(VI) (>75 microM), whereas that of KCH5 showed NADH dependence, pH optimum at 6.0, high K(m) (200 microM) and no inhibition by Cr(VI). Cr(VI) reduction was optimum at 35 degrees C for CFEs of KCH3 and KCH5 and 30 degrees C for that of KCH3. Cr(VI) reduction by CFEs of all the strains were inhibited by Hg(2+) and enhanced by Cu(2+). Activity enhancement by Cu(2+) was more predominant (290%) for KCH4. The characterization of Cr(VI) reduction by CFEs of chromate resistant isolates of different genera is useful for development of Cr(VI) bioremediation.  相似文献   

8.
Chromate reduction by rabbit liver aldehyde oxidase   总被引:2,自引:0,他引:2  
Chromate was reduced during the oxidation of 1-methylnicotinamide chloride by partially purified rabbit liver aldehyde oxidase. In addition to 1-methylnicotinamide, several other electron donor substrates for aldehyde oxidase were able to support the enzymatic chromate reduction. The reduction required the presence of both enzyme and the electron donor substrate. The rate of the chromate reduction was retarded by inhibitors of aldehyde oxidase but was not affected by substrates or inhibitors of xanthine oxidase. These results are consistent with the involvement of aldehyde oxidase in the reduction of chromate by rabbit liver cytosolic enzyme preparations.  相似文献   

9.
Chromate reduction was studied in a membrane bioreactor under action of Pseudomonas bacteria immobilized in agar–agar films on the surface of synthetic membrane. Immobilized cells are protected from the excessive toxic action at high chromate concentration that improves cell activity compared with free cells. Almost complete chromate reduction was observed at stepwise introducing of chromate in feed solution allowing maintenance of optimal chromate concentration. Reduction is suppressed by high metabolite concentrations, which reached on the sixth step of chromate adding in studied system. Cell ability to reduce chromate is restored after changing of feed and receiving solutions allowing remediation of Cr(VI)-contaminated water in semi-batch operation of membrane bioreactor.  相似文献   

10.
Summary Factors affecting chromate reduction by cultures of Enterobacter cloacae HO1 were investigated. The reduction was sensitive to oxygen stress and E. cloacae strain HO1 could reduce chromate only under anaerobic conditions. Rates of reduction of chromate were proportional to cell number. The optimal pH was between 7.0 and 7.8, and the optimal temperature was 30°–37°C. High rates of reduction were observed at levels of 1–2 mM potassium chromate, but concentrations above 5 mM were lethal to growing cells and prevented the reduction. Acetate, ethanol, malate, succinate and glycerol were effective electron donors for chromate reduction. Glucose, citrate, pyruvate and lactate supported anaerobic growth, but only limited amounts of reduction were observed with these organic compounds. Chromate reduction by strain HO1 was inhibited by molybdate, vanadate, tellurate and manganese oxide at concentrations where the cell viability was not significantly affected. Metabolic poisons including carbonylcyanide-m-chlorophenyl hydrazone, sodium cyanide, formaldehyde and zinc sulphate also inhibited chromate reduction.  相似文献   

11.
Plasmid chromate resistance and chromate reduction.   总被引:5,自引:0,他引:5  
C Cervantes  S Silver 《Plasmid》1992,27(1):65-71
Compounds of hexavalent chromium (chromates and dichromates) are highly toxic. Plasmid genetic determinants for chromate resistance have been described in several bacterial genera, most notably in Pseudomonas. Resistance to chromate is associated with decreased chromate transport by the resistant cells. The genes for a hydrophobic polypeptide, ChrA, were identified in chromate resistance plasmids of Pseudomonas aeruginosa and Alcaligenes eutrophus. ChrA is postulated to be responsible for the outward membrane translocation of chromate anions. Widespread bacterial reduction of hexavalent chromate to the less toxic trivalent chromic ions is also known. Chromate reduction determinants have not, however, been found on bacterial plasmids or transposons. In different bacteria, chromate reduction is either an aerobic or an anaerobic process (but not both) and is carried out either by soluble proteins or by cell membranes. Chromate reduction may also be a mechanism of resistance to chromate, but this has not been unequivocally shown.  相似文献   

12.
A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter(-1) and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a K(m) of 23 mg liter(-1) (437 microM) and a V(max) of 0.98 mg of Cr h(-1) mg of protein(-1) (317 nmol min(-1) mg of protein(-1)). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments.  相似文献   

13.
Aerobic chromate reduction by Bacillus subtilis   总被引:6,自引:0,他引:6  
We have studied the reduction of hexavalent chromium (chromate) to the less toxic trivalent form by using cell suspensions and cell-free extracts from the common soil bacterium, Bacillus subtilis. B. subtilis was able to grow and reduce chromate at concentrations ranging from 0.1 to 1 mM K2CrO4. Chromate reduction was not affected by a 20-fold excess of nitrate-compound that serves as alternate electron acceptor and antagonizes chromate reduction by anaerobic bacteria. Metabolic poisons including sodium azide and sodium cyanide inhibited chromate reduction. Reduction was effected by a constitutive system associated with the soluble protein fraction and not with the membrane fraction. The reducing activity was heat labile and showed a Km of 188 m CrO4 2-. The reductase can mediate the transfer of electrons from NAD(P)H to chromate. The results suggest that chromate is reduced via a detoxification system rather than dissimilatory electron transport.  相似文献   

14.
A Bacillus sp., designated as strain MN-003, was isolated as the dominant cultivatable naphthalene-degrading organism from oil-contaminated tropical marine sediments. Strain MN-003 is strictly aerobic, rod-shaped, Gram-positive, catalase positive, oxidase negative, and forms endospores. Strain MN-003 grew at salinities ranging from 0.28 to 7.00% and temperatures ranging from 15 to 41 degrees C. Phylogenetic analyses reveal that strain MN-003 is most similar to Bacillus sp. VAN14, with a 16S rRNA sequence identity of 97.9%. Based on taxonomic and 16S rRNA data, strain MN-003 was named Bacillus naphthovorans sp. nov. When grown with naphthalene as sole carbon source, strain MN-003 had a maximal specific growth rate (mu(max)) of 0.32 +/- 0.03 h(-1), and a half-saturation constant (K(S)) of 22.3 +/-4.2 microM. A batch study of the tropical marine sediments enriched with naphthalene showed that cells of the Bacillus genus grew to become dominant members of the microbial community. The bacilli comprised 39.5 +/- 6.5% of the microbial fraction after 20 days of enrichment.  相似文献   

15.
Catabolic pathways for utilization of naphthalene (NAP), anthracene (ANT), phenanthrene (PHE), and fluoranthene (FLA) by Sphingomonas paucimobilis EPA505 were identified. Accumulation of catabolic intermediates was investigated with three classes of Tn5 mutants with the following polycyclic aromatic hydrocarbon (PAH)-negative phenotypes; (class I NAP(-) PHE(-) FLA(-), class II NAP(-) PHE(-), and class III FLA(-)). Class I mutant 200pbhA had a Tn5 insertion within a meta ring fission dioxygenase (pbhA), and a ferredoxin subunit gene (pbhB) resided directly downstream. Mutant 200pbhA and other class I mutants lost the ability to catalyze the initial dihydroxylation step and did not transform NAP, ANT, PHE, or FLA. Class I mutant 401 accumulated salicylic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-2-naphthoic acid, and hydroxyacenaphthoic acid during incubation with NAP, ANT, PHE, or FLA, respectively. Class II mutant 132pbhC contained the Tn5 insertion in an aldolase hydratase (pbhC) and accumulated what appeared to be meta ring fission products: trans-o-hydroxybenzylidene pyruvate, trans-o-hydroxynaphylidene pyruvate, and trans-o-hydroxynaphthyl-oxobutenoic acid when incubated with NAP, ANT, and PHE, respectively. When mutant 132pbhC was incubated with 1-hydroxy-2-naphthoic acid, it accumulated trans-o-hydroxybenzylidene pyruvate. Class III mutant 104ppdk had a Tn5 insertion in a pyruvate phosphate dikinase gene that affected expression of a FLA-specific gene and accumulated a proposed meta ring fission product; trans-o-hydroxyacenaphyl-oxobutenoic acid during incubation with FLA. Trans-o-hydroxyacenaphyl-oxobutenoic acid was degraded to acenaphthenone that accumulated with class III mutant 611. Acenaphthenone was oxidized via incorporation of one molecule of dioxygen by another oxygenase. 2,3-Dihydroxybenzoic acid was the final FLA-derived catabolic intermediate detected. Analysis of PAH utilization mutants revealed that there are convergent and divergent points involved in NAP, ANT, PHE, and FLA utilization by S. paucimobilis EPA505.  相似文献   

16.
Many members of the sphingomonad genus isolated from different geological areas can degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs) and related compounds. These sphingomonads such as Sphingobium yanoikuyae strain B1, Novosphingobium aromaticivorans strain F199, and Sphingobium sp. strain P2 have been found to possess a unique group of genes for aromatic degradation, which are distantly related with those in pseudomonads and other genera reported so far both in sequence homology and gene organization. Genes for aromatics degradation in these sphingomonads are complexly arranged; the genes necessary for one degradation pathway are scattered through several clusters. These aromatic catabolic gene clusters seem to be conserved among many other sphingomonads such as Sphingobium yanoikuyae strain Q1, Sphingomonas paucimobilis strain TNE12, S. paucimobilis strain EPA505, Sphingobium agrestis strain HV3, and Sphingomonas chungbukensis strain DJ77. Furthermore, some genes for naphthalenesulfonate degradation found in Sphingomonas xenophaga strain BN6 also share a high sequence homology with their homologues found in these sphingomonads. On the other hand, protocatechuic catabolic gene clusters found in fluorene-degrading Sphingomonas sp. strain LB126 appear to be more closely related with those previously found in lignin-degrading S. paucimobilis SYK-6 than the genes in this group of sphingomonads. This review summarizes the information on the distribution of these strains and relationships among their aromatic catabolic genes.  相似文献   

17.
The homodimeric flavoprotein FerB of Paracoccus denitrificans catalyzed the reduction of chromate with NADH as electron donor. When present, oxygen was reduced concomitantly with chromate. The recombinant enzyme had a maximum activity at pH 5.0. The stoichiometric ratio of NADH oxidized to chromate reduced was found to be 1.53 ± 0.09 (O2 absent) or > 2 (O2 present), the apparent K M value for chromate amounted to 70 ± 10 μM with the maximum rate of 2.9 ± 0.3 μmol NADH s−1 (mg protein)−1. Diode-array spectrophotometry and experiments with one-electron acceptors provided evidence for oxygen consumption being due to a flavin semiquinone, formed transiently during the interaction of FerB with chromate. At the whole-cell level, a ferB mutant strain displayed only slightly diminished rate of chromate reduction when compared to the wild-type parental strain. Anaerobically grown cells were more active than cells grown aerobically. The activity could be partly inhibited by antimycin, suggesting an involvement of the respiratory chain. Chromate concentrations above ten micromolars transiently slowed or halted culture growth, with the effect being more pronounced for the mutant strain. It appears, therefore, that, rather than directly reducing chromate, FerB confers a protection of cells against the oxidative stress accompanying chromate reduction. With a strain carrying the chromosomally integrated ferB promoter-lacZ fusion, it was shown that the ferB gene is not inducible by chromate.  相似文献   

18.
Pseudomonas fluorescens LB300 is a chromateresistant strain isolated from chromium-contaminated river sediment. Chromate resistance is conferred by the plasmid pLHB1. Strain LB300 grew in minimal salts medium with as much as 1000 g of K2CrO4 ml–1, and actively reduced chromate to Cr(III) while growing aerobically on a variety of substrates. Chromate was also reduced during anaerobic growth on acetate, the chromate serving as terminal electron acceptor. P. fluorescens LB303, a plasmidless, chromatesensitive variant of P. fluorescens LB300, did not grow in minimal salts medium with more than 10 g of K2CrO4 ml–1. However, resting cells of strain LB303 grown without chromate reduced chromate as well as strain LB300 cells grown under the same conditions. Furthermore, resting cells of chromate-sensitive Pseudomonas putida strain AC10, also catalyzed chromate reduction. Evidently chromate resistance and chromate reduction in these organisms are unrelated. Comparison of the rates of chromate reduction by chromate grown cells and cells grown without chromate indicated that the chromate reductase activity is constitutive. Studies with cell-free extracts show that the reductase is membrane-associated and can mediate the transfer of electrons from NADH to chromate.  相似文献   

19.
The Sphingomonas genus hosts many interesting pollutant-degrading strains. Sphingomonas sp. EPA505 is the best studied polycyclic aromatic hydrocarbon (PAH)-degrading Sphingomonas strain. Based on 16S rRNA gene sequence analysis, Sphingomonas sp. strain EPA505 forms a separate branch in the Sphingomonas phylogenetic tree grouping exclusively PAH-degrading isolates. For specific PCR detection and monitoring of Sphingomonas sp. EPA505 and related strains in PAH-contaminated soils, a new 16S rRNA gene-based primer set was designed. The new primer set was shown to be highly selective for Sphingomonas sp. strain EPA505 as it only amplified DNA from strain EPA505 and not from other tested Sphingomonas strains or soil bacteria not belonging to the Sphingomonas genus. Using DNA extracts of a variety of inoculated PAH-contaminated soils, the primer pair was able to detect EPA505 in concentrations as low as 102 cells per gram of soil. Applying the new primer set, 16S rRNA gene fragments which were 99–100% similar to the corresponding gene of strain EPA505 were amplified from four of five PAH-contaminated soils. On the other hand, no PCR products were obtained from any of five tested uncontaminated soils. The preferential presence of EPA505 related Sphingomonas strains in PAH-contaminated soils with very different contamination profiles and different origin suggests an important role of this type of Sphingomonas in the natural Sphingomonas community colonizing PAH-contaminated sites.  相似文献   

20.
Heavy-metal chromium [Cr(VI)] is a ubiquitous environmental pollutant. Comparing with chemical reduction, microbiological reduction is considered to be a friendly and cheaper way to decrease the damage caused by chromate. A bacterial strain, CR-07, which is resistant to and capable of reducing chromate was isolated from a mud sample of iron ore and identified as a Microbacterium sp. The bacterium had a high degree of tolerance to chromate, and could grow in LB medium containing 4.08 mM of K2Cr2O7. It also had a degree of resistance to other heavy metals, e.g. Cd2+, Pb2+, Zn2+, Cu2+, Co2+, Hg2+ and Ag+. The bacterium could remove 1.02 mM of Cr(VI) from LB medium within 36 h of incubation. Chromate removal was achieved in the supernatant from the bacterial cultures, and corresponded to chromate reduction. The activity of chromate reduction by the bacterium was not related to enzymes or reducing sugars, while fluorometric assay suggested that glutathione, a chromate-reducing substance which was produced by the bacterium, was one of the factors that contributed to the reduction of Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号