首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishment of a germ-line competent C57BL/6 embryonic stem cell line   总被引:22,自引:0,他引:22  
Embryonic stem (ES) cell lines have been derived from blastocysts of the inbred mouse strain C57BL/6. The highest frequencies of ES cell colonies were observed when blastocysts were explanted directly onto growth-arrested feeder layers of 5637 human bladder carcinoma cells in the presence of conditioned medium. One of the male ES cell lines tested (BL/6-III) was shown to be karyotypically stable and germ-line competent when introduced into BALB/c host blastocysts. These results demonstrate that ES cell lines from inbred mouse strains other than 129/Sv may be used as vectors to introduce selected mutations into the germ-line of mice.  相似文献   

2.
Typically, embryonic stem (ES) cells derived from 129 mouse substrains are used to generate genetically altered mouse models. Resulting chimeric mice were then usually converted to a C57BL/6 background, which takes at least a year, even in the case of speed congenics. In recent years, embryonic stem cells have been derived from various mouse strains. However, 129 ES cells are still widely used partially due to poor germline transmission of ES cells derived from other strains. Availability of highly germline-competent C57BL/6 ES cells would enormously facilitate generation of genetically altered mice in a pure C57BL/6 genetic background by eliminating backcrossing time, and thus significantly reducing associated costs and efforts. Here, we describe establishment of a C57BL/6 ES cell line (LK1) and compare its efficacy to a widely used 129SvJ ES cell line (GSI-1) in generating germline chimeras. In contrast to earlier studies, our data shows that highly germline-competent C57BL/6 ES cell lines can be derived using a simple approach, and thus support broader use of C57BL/6 ES cell lines for genetically engineered mouse models. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Transgenic mice ubiquitously expressing enhanced green fluorescent protein (EGFP) are useful as marker lines in chimera experiments. We established a new embryonic stem (ES) cell line (named B6G-2) from a C57BL/6 blastocyst showing ubiquitous EGFP expression. Undifferentiated B6G-2 cells showed strong green fluorescence and mRNAs of pluripotent marker genes. B6G-2 cells were transferred into a C57BL/6 blastocyst to generate a germline chimera, the progeny of which inherited ubiquitous EGFP expression. Mice derived completely from B6G-2 cells were also developed from the ES cells; these were tetraploid chimeras. The established B6G-2 cells were shown to be pluripotent and to be capable of differentiating into cells of all lineages. Thus, the new ES cell line expressing EGFP ubiquitously is useful for basic research in the field of regenerative medicine. The B6G-2 cell line is freely available from the BioResource Center, RIKEN Tsukuba Institute (http://www.brc.riken.jp/lab/cell/english/).  相似文献   

4.
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of blastocysts. These cells are appropriate for creation of animal models of human genetic diseases, the study of gene function in vivo and differentiation into specific types as potential therapeutic agents for several human diseases. We describe here, the production of new ES cell lines from blastocysts recovered from the C57BL/6 and BALB/c mouse strains by changing the concentration of leukemia inhibitory factor (LIF) and primary culture conditions. The established cell lines were analyzed by simple karyotype, C banding, alkaline phosphatase activity, and Oct-4 expression as well as for the presence of the SRY gene. Two ES cell lines from C57BL/6 and three from the BALB/c were produced. The two C57BL/6 ES cell lines were established with either 1000 or 5000 IU LIF, whereas the BALB/c ES cell lines required 5000 IU LIF. Four of the ES cell lines had a normal karyotype. C banding and sex-determining region of Y chromosome-polymerase chain reaction showed that all cell lines had an XY sex chromosome composition. All five of the cell lines expressed alkaline phosphatase activity and Oct-4. One of the BALB/c ES cell lines, when injected into C57BL/6 blastocysts, produced high rates of chimerism as assessed by coat color, and the male chimera produced germ-line offspring when mated with BALB/c females. These results indicate that ES cells from inbred strains can be isolated using commercially available reagents and that the establishment of BALB/c ES cell lines may require different culture conditions to the 129 or C57BL/6 strains.  相似文献   

5.
《Genome biology》2013,14(7):R82

Background

The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms.

Results

We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems.

Conclusions

Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.  相似文献   

6.
C57BL/6 is a well-characterized mouse strain that is used extensively for immunological and neurological research. The establishment of C57BL/6 ES cell lines has facilitated the study of gene-altered mice in a pure genetic background-however, relatively few such lines exist. Using a defined media supplement, knockout serum replacement (KSR) with knockout DMEM (KSR-KDMEM), we find that we can readily establish ES cell lines from blastocysts of C57BL/6J mice. Six lines were established, all of which were karyotypically normal and could be maintained in the undifferentiated state on mouse embryonic fibroblast (MEF) feeders. One line was further tested and found to be karyotypically stable and germline competent, both prior to manipulation and after gene targeting. For this cell line, efficiencies of cell cloning and chimera generation were greater when maintained in KSR-KDMEM. Our work suggests that the use of defined serum-free media may facilitate the generation of ES cells from inbred mouse strains.  相似文献   

7.
Mouse embryonic stem (ES) cells with the C57BL/6 genetic background allow the generation of knockout mice without the need to backcross to C57BL/6. However, C57BL/6 ES cells whose pluripotency after homologous recombination has been confirmed are not yet available from public cell banks. To facilitate the use of ES cells derived from C57BL/6 sublines in both biologic and medical research, we demonstrated that the use of knockout serum replacement as a medium supplement and 8-cell blastomeres as recipient embryos allowed establishment of ES cells and production of germline chimeric mice, respectively. Under effective conditions, a large number of ES cell lines were established from C57BL/6J and C57BL/6N blastocysts. The majority of ES cells in many cell lines obtained from both strains showed a normal chromosome number. Germline chimeric mice were generated from C57BL/6J and C57BL/6N ES cells. Finally, the ES cell line B6J-S1UTR, derived from C57BL/6J, was used for successful production of gene knockout mice. C57BL/6J ES (B6J-S1UTR and B6J-23UTR) and C57BL/6N ES (B6N-22UTR) cells are available from the cell bank of the BioResource Center at RIKEN Tsukuba Institute (http://www.brc.riken.jp/lab/cell/english/).  相似文献   

8.
Genetically modified mouse strains derived from embryonic stem (ES) cells are powerful tools for gene function analysis. ES cells from the C57BL/6 mouse strain are not widely used to generate mouse models despite the advantage of a defined genetic background. We assessed genetic variation in six such ES cell lines with 275 SSLP markers. Compared to C57BL/6, Bruce4 differed at 34 SSLP markers and had significant heterozygosity on three chromosomes. BL/6#3 and Dale1 ES cell lines differed at only 3 SSLP makers. The C2 and WB6d ES cell lines differed at 6 SSLP markers. It is important to compare the efficiency of producing mouse models with available C57BL/6 ES cells relative to standard 129 mouse strain ES cells. We assessed genetic stability (the tendency of cells to become aneuploid) in 110 gene-targeted ES cell clones from the most widely used C57BL/6 ES cell line, Bruce4, and 710 targeted 129 ES cell clones. Bruce4 clones were more likely to be aneuploid and unsuitable for ES cell-mouse chimera production. Despite their tendency to aneuploidy and consequent inefficiency, use of Bruce4 ES cells can be valuable for models requiring behavioral studies and other mouse models that benefit from a defined C57BL/6 background. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
An increasing number of cancer subtypes are treated with front-line immunotherapy. However, approaches to overcome primary and acquired resistance remain limited. Preclinical mouse models are often used to investigate resistance mechanisms, novel drug combinations, and delivery methods; yet most of these models lack the genetic diversity and mutational patterns observed in human tumors. Here we describe a series of 13 C57BL/6J melanoma cell lines to address this gap in the field. The Ohio State University-Moffitt Melanoma Exposed to Radiation (OSUMMER) cell lines are derived from mice expressing endogenous, melanocyte-specific, and clinically relevant Nras driver mutations (Q61R, Q61K, or Q61L). Exposure of these animals to a single, non-burning dose of ultraviolet B accelerates the onset of spontaneous melanomas with mutational patterns akin to human disease. Furthermore, in vivo irradiation selects against potent tumor antigens, which could prevent the outgrowth of syngeneic cell transfers. Each OSUMMER cell line possesses distinct in vitro growth properties, trametinib sensitivity, mutational signatures, and predicted antigenicity. Analysis of OSUMMER allografts shows a correlation between strong, predicted antigenicity and poor tumor outgrowth. These data suggest that the OSUMMER lines will be a valuable tool for modeling the heterogeneous responses of human melanomas to targeted and immune-based therapies.  相似文献   

10.
11.
Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6-8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.  相似文献   

12.
Extensive evidence indicates that genetic predisposition is a central element in susceptibility to systemic lupus erythematosus both in humans and animals. We have previously shown that a congenic line carrying a 129-derived chromosome 1 interval on the C57BL/6 background developed humoral autoimmunity. To further dissect the contribution to autoimmunity of this 129 interval, we have created six subcongenic strains carrying fractions of the original 129 region and analyzed their serological and cellular phenotypes. At 1 year of age the congenic strain carrying a 129 interval between the microsatellites D1Mit15 (87.9 cM) and D1Mit115 (99.7 cM) (B6.129chr1b) had high levels of autoantibodies, while all the other congenic lines were not significantly different from the C57BL/6 controls. The B6.129chr1b strain displayed only mild proliferative glomerulonephritis despite high levels of IgG and C3 deposited in the kidneys. FACS analysis of the spleens revealed that the B6.129chr1b mice had a marked increase in the percentage of activated T cells associated with a significant reduction in the proportion of CD4(+)CD25(high) regulatory T cells. Moreover, this analysis showed a significantly reduced percentage of marginal zone B cells that preceded autoantibody production. Interestingly the 129chr1b-expressing bone marrow-derived macrophages displayed an impaired uptake of apoptotic cells in vitro. Collectively, our data indicate that the 129chr1b segment when recombined on the C57BL/6 genomic background is sufficient to induce loss of tolerance to nuclear Ags. These findings have important implication for the interpretation of the autoimmune phenotype associated with gene-targeted models.  相似文献   

13.
Inbred ES lines, though useful for generating targeted mutations in mice, are used infrequently. To appreciate the relative efficiency of inbred ES lines, a C57BL/6 ES line was compared with 129 strain ES lines for effectiveness in chimera formation leading to the establishment of targeted mutations in mice. Data from a transgenic facility spanning 7 years were collected. C57BL/6 ES cells injected into Balb/c embryos results in lower coat color chimerism than do 129 ES cells injected into C57BL/6 embryos. Combined data indicate that five independent targeted C57BL/6 clones should be injected as compared to three independent 129 clones to generate enough chimeras to effectively test for germ-line transmission. Thus, although less efficient than 129 ES lines, the C57BL/6 ES line is a relatively competent line and useful for the routine generation of targeted mutations in mice on a defined genetic background.  相似文献   

14.
15.
Previous studies have shown large differences in taste responses to several sweeteners between mice of the C57BL/6ByJ (B6) and 129P3/J (129) inbred strains. The goal of this study was to compare behavioral responses of B6 and 129 mice to a wider variety of sweeteners. Seventeen sweeteners were tested using two-bottle preference tests with water. Three main patterns of strain differences were evident. First, sucrose, maltose, saccharin, acesulfame-K, sucralose and SC-45647 were preferred by both strains, but the B6 mice had lower preference thresholds and higher solution intakes. Second, the amino acids D-phenylalanine, D-tryptophan, L-proline and glycine were highly preferred by B6 mice, but not by 129 mice. Third, glycyrrhizic acid, neohesperidin dihydrochalcone, thaumatin and cyclamate did not evoke strong preferences in either strain. Aspartame was neutral to all 129 and some B6 mice, but other B6 mice strongly preferred it. Thus, compared with the 129 mice the B6 mice had higher preferences for sugars, sweet tasting amino acids and several but not all non-caloric sweeteners. Glycyrrhizic acid, neohesperidin, thaumatin and cyclamate are not palatable to B6 or 129 mice.  相似文献   

16.
To identify ways to improve the efficiency of generating chimeric mice via microinjection of blastocysts with ES cells, we compared production and performance of ES-cell derived chimeric mice using blastocysts from two closely related and commonly used sub-strains of C57BL/6. Chimeras were produced by injection of the same JM8.N4 (C57BL/6NTac) derived ES cell line into blastocysts of mixed sex from either C57BL/6J (B6J) or C57BL/6NTac (B6NTac) mice. Similar efficiency of production and sex-conversion of chimeric animals was observed with each strain of blastocyst. However, B6J chimeric males had fewer developmental abnormalities involving urogenital and reproductive tissues (1/12, 8?%) compared with B6NTac chimeric males (7/9, 78?%). The low sample size did not permit determination of statistical significance for many parameters. However, in each category analyzed the B6J-derived chimeric males performed as well, or better, than their B6NTac counterparts. Twelve of 14 (86?%) B6J male chimeras were fertile compared with 6 of 11 (55?%) B6NTac male chimeras. Ten of 12 (83?%) B6J chimeric males sired more than 1 litter compared with only 3 of 6 (50?%) B6NTac chimeras. B6J male chimeras produced more litters per productive mating (3.42?±?1.73, n?=?12) compared to B6NTac chimeras (2.17?±?1.33, n?=?6). Finally, a greater ratio of germline transmitting chimeric males was obtained using B6J blastocysts (9/14; 64?%) compared with chimeras produced using B6NTac blastocysts (4/11; 36?%). Use of B6J host blastocysts for microinjection of ES cells may offer improvements over blastocysts from B6NTac and possibly other sub-strains of C57BL/6 mice.  相似文献   

17.
Embryonic stem (ES) cells from a C57BL/6N (B6N) background injected into B6(Cg)-Tyrc-2J/J (B6-albino) recipient blastocysts are commonly used for generating genetically modified mouse models. To understand the influence of the recipient blastocyst strain on germline transmission, BALB/cAnNTac and B6-albino germline transmission rates were compared using the C57BL6/N-derived C2 ES cell line. A total of 92 ES cell clones from 27 constructs were injected. We compared blastocyst yield, birth rate, chimera formation rate, and high-percentage (>50 %) male chimera formation rate. For germline transmission, we analyzed 24 clones from 19 constructs, which generated high-percentage male chimeras from both donor strains. B6-albino hosts resulted in higher mean blastocyst yields per donor than did BALB/c ones (3.6 vs. 2.5). However, BALB/c hosts resulted in a higher birth rate than B6-albino ones (36 vs. 27 %), a higher chimera formation rate (50 vs. 42 %), a higher high-percentage male chimera rate (10 vs. 8 %), and a higher germline transmission rate (65 vs. 49 %), respectively. Our data suggest that BALB/c is a suitable blastocyst host strain for C2 ES cells and has an advantage over the B6-albino strain for receiving the injection of C2 ES cells.  相似文献   

18.
19.
Mice from the inbred C57BL/6 strain have been commonly used for the generation and analysis of transgenic and knockout animal models. However, several C57BL/6 substrains exist, and these are genetically and phenotypically different. In addition, each of these substrains can be purchased from different animal providers and, in some cases, they have maintained their breeding stocks separated for a long time, allowing genetic differences to accumulate due to individual variability and genetic drift. With the aim of describing the differences in the genotype of several C57BL/6 substrains, we applied the Illumina® Mouse Medium Density Linkage Mapping panel, with 1,449 single nucleotide polymorphisms (SNPs), to individuals from ten C57BL/6-related strains: C57BL/6JArc, C57BL/6J from The Jackson Lab, C57BL/6J from Crl, C57BL6/JRccHsd, C57BL/6JOlaHsd, C57BL/6JBomTac, B6(Cg)-Tyr c?2j /J, C57BL/6NCrl, C57BL/6NHsd and C57BL/6NTac. Twelve SNPs were found informative to discriminate among the mouse strains considered. Mice derived from the original C57BL/6J: C57BL/6JArc, C57BL/6J from The Jackson Lab and C57BL/6J from Crl, were indistinguishable. Similarly, all C57BL/6N substrains displayed the same genotype, whereas the additional substrains showed intermediate cases with substrain-specific polymorphisms. These results will be instrumental for the correct genetic monitoring and appropriate mouse colony handling of different transgenic and knockout mice produced in distinct C57BL/6 inbred substrains.  相似文献   

20.
We report an albino C57BL/6N mouse strain carrying a spontaneous mutation in the tyrosinase gene (C57BL/6N‐TyrcWTSI). Deep whole genome sequencing of founder mice revealed very little divergence from C57BL/6NJ and C57BL/6N (Taconic). This coisogenic strain will be of great utility for the International Mouse Phenotyping Consortium (IMPC), which uses the EUCOMM/KOMP targeted C57BL/6N ES cell resource, and other investigators wishing to work on a defined C57BL/6N background. genesis 51:523–528. © 2013 The Authors. Genesis Published by Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号