首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microgravity tissue engineering   总被引:35,自引:4,他引:31  
Summary Tissue engineering studies were done using isolated cells, three-dimensional polymer scaffolds, and rotating bioreactors operated under conditions of simulated microgravity. In particular, vessel rotation speed was adjusted such that 10 mm diameter × 2 mm thick cell-polymer constructs were cultivated in a state of continuous free-fall. Feasibility was demonstrated for two different cell types: cartilage and heart. Conditions of simulated microgravity promoted the formation of cartilaginous constructs consisting of round cells, collagen and glycosaminoglycan (GAG), and cardiac tissue constructs consisting of elongated cells that contracted spontaneously and synchronously. Potential advantages of using a simulated microgravity environment for tissue engineering were demonstrated by comparing the compositions of cartilaginous constructs grown under four different in vitro culture conditions: simulated microgravity in rotating bioreactors, solid body rotation in rotating bioreactors, turbulent mixing in spinner flasks, and orbital mixing in petri dishes. Constructs grown in simulated microgravity contained the highest fractions of total regenerated tissue (as a percent of construct dry weight) and of GAG, the component required for cartilage to withstand compressive force.  相似文献   

2.
A concentric cylinder bioreactor has been developed to culture tissue engineered cartilage constructs under hydrodynamic loading. This bioreactor operates in a low shear stress environment, has a large growth area for construct production, allows for dynamic seeding of constructs, and provides for a uniform loading environment. Porous poly-lactic acid constructs, seeded dynamically in the bioreactor using isolated bovine chondrocytes, were cultured for 4 weeks at three seeding densities (60, 80, 100 x 10(6) cells per bioreactor) and three different shear stresses (imposed at 19, 38, and 76 rpm) to characterize the effect of chondrocyte density and hydrodynamic loading on construct growth. Construct seeding efficiency with chondrocytes is greater than 95% within 24 h. Extensive chondrocyte proliferation and matrix deposition are achieved so that after 28 days in culture, constructs from bioreactors seeded at the highest cell densities contain up to 15 x 10(6) cells, 2 mg GAG, and 3.5 mg collagen per construct and exhibit morphology similar to that of native cartilage. Bioreactors seeded with 60 million chondrocytes do not exhibit robust proliferation or matrix deposition and do not achieve morphology similar to that of native cartilage. In cultures under different steady hydrodynamic loading, the data demonstrate that higher shear stress suppresses matrix GAG deposition and encourages collagen incorporation. In contrast, under dynamic hydrodynamic loading conditions, cartilage constructs exhibit robust matrix collagen and GAG deposition. The data demonstrate that the concentric cylinder bioreactor provides a favorable hydrodynamic environment for cartilage construct growth and differentiation. Notably, construct matrix accumulation can be manipulated by hydrodynamic loading. This bioreactor is useful for fundamental studies of construct growth and to assess the significance of cell density, nutrients, and hydrodynamic loading on cartilage development. In addition, studies of cartilage tissue engineering in the well-characterized, uniform environment of the concentric cylinder bioreactor will develop important knowledge of bioprocessing parameters critical for large-scale production of engineered tissues.  相似文献   

3.
Computational fluid dynamics (CFD) models to quantify momentum and mass transport under conditions of tissue growth will aid bioreactor design for development of tissue-engineered cartilage constructs. Fluent CFD models are used to calculate flow fields, shear stresses, and oxygen profiles around nonporous constructs simulating cartilage development in our concentric cylinder bioreactor. The shear stress distribution ranges from 1.5 to 12 dyn/cm(2) across the construct surfaces exposed to fluid flow and varies little with the relative number or placement of constructs in the bioreactor. Approximately 80% of the construct surface exposed to flow experiences shear stresses between 1.5 and 4 dyn/cm(2), validating the assumption that the concentric cylinder bioreactor provides a relatively homogeneous hydrodynamic environment for construct growth. Species mass transport modeling for oxygen demonstrates that fluid-phase oxygen transport to constructs is uniform. Some O(2) depletion near the down stream edge of constructs is noted with minimum pO(2) values near the constructs of 35 mmHg (23% O(2) saturation). These values are above oxygen concentrations in cartilage in vivo, suggesting that bioreactor oxygen concentrations likely do not affect chondrocyte growth. Scale-up studies demonstrate the utility and flexibility of CFD models to design and characterize bioreactors for growth of tissue-engineered cartilage.  相似文献   

4.
Physical forces experienced by engineered-tissues during in vitro cultivation influence tissue growth and function. The hydrodynamic environment within bioreactors plays a decisive role in providing the necessary physical stimuli and nutrient transport to support tissue development. Our overall goal is to investigate interrelationships between the local hydrodynamic environment in the bioreactor and the structural and functional tissue properties in order to optimize the production of clinically relevant engineered-tissues. To this end, we used computational fluid dynamics (CFD) modeling to characterize the complex hydrodynamic environment in a wavy-walled bioreactor used for cultivation of tissue-engineered cartilage constructs and examined the changes in the flow field due to the presence of constructs. The flow-induced shear stress range experienced by engineered constructs cultivated in the wavy-walled bioreactor (0-0.67 dyn/cm(2)) was found to be significantly lower than that in the spinner flask (0-1.2 dyn/cm(2)), and to be modulated by the radial or axial position of the constructs. These CFD results are validated by experimental particle-image velocimetry (PIV) measurements previously reported by our group. Results from the present study indicate that the location of constructs in the bioreactor not only affected the magnitude and distribution of the shear stresses on the constructs, but also other hydrodynamic parameters, such as the directional distribution of the fluid velocity and the degree of fluid recirculation, all of which may differentially influence the development of tissue-engineered constructs.  相似文献   

5.
Cartilage tissue engineering requires the use of bioreactors in order to enhance nutrient transport and to provide sufficient mechanical stimuli to promote extracellular matrix (ECM) synthesis by chondrocytes. The amount and quality of ECM components is a large determinant of the biochemical and mechanical properties of engineered cartilage constructs. Mechanical forces created by the hydrodynamic environment within the bioreactors are known to influence ECM synthesis. The present study characterizes the hydrodynamic environment within a novel wavy-walled bioreactor (WWB) used for the development of tissue-engineered cartilage. The geometry of this bioreactor provides a unique hydrodynamic environment for mammalian cell and tissue culture, and investigation of hydrodynamic effects on tissue growth and function. The flow field within the WWB was characterized using two-dimensional particle-image velocimetry (PIV). The flow in the WWB differed significantly from that in the traditional spinner flask both qualitatively and quantitatively, and was influenced by the positioning of constructs within the bioreactor. Measurements of velocity fields were used to estimate the mean-shear stress, Reynolds stress, and turbulent kinetic energy components in the vicinity of the constructs within the WWB. The mean-shear stress experienced by the tissue-engineered constructs in the WWB calculated using PIV measurements was in the range of 0-0.6 dynes/cm2. Quantification of the shear stress experienced by cartilage constructs, in this case through PIV, is essential for the development of tissue-growth models relating hydrodynamic parameters to tissue properties.  相似文献   

6.
Modulation of the mechanical properties of tissue engineered cartilage   总被引:9,自引:0,他引:9  
Cartilaginous constructs have been grown in vitro using chondrocytes, biodegradable polymer scaffolds, and tissue culture bioreactors. In the present work, we studied how the composition and mechanical properties of engineered cartilage can be modulated by the conditions and duration of in vitro cultivation, using three different environments: static flasks, mixed flasks, and rotating vessels. After 4-6 weeks, static culture yielded small and fragile constructs, while turbulent flow in mixed flasks induced the formation of an outer fibrous capsule; both environments resulted in constructs with poor mechanical properties. The constructs that were cultured freely suspended in a dynamic laminar flow field in rotating vessels had the highest fractions of glycosaminoglycans and collagen (respectively 75% and 39% of levels measured in native cartilage), and the best mechanical properties (equilibrium modulus, hydraulic permeability, dynamic stiffness, and streaming potential were all about 20% of values measured in native cartilage). Chondrocytes in cartilaginous constructs remained metabolically active and phenotypically stable over prolonged cultivation in rotating bioreactors. The wet weight fraction of glycosaminoglycans and equilibrium modulus of 7 month constructs reached or exceeded the corresponding values measured from freshly explanted native cartilage. Taken together, these findings suggest that functional equivalents of native cartilage can be engineered by optimizing the hydrodynamic conditions in tissue culture bioreactors and the duration of tissue cultivation.  相似文献   

7.
Chondrocytes isolated from human fetal epiphyseal cartilage were seeded under mixed conditions into 15-mm-diameter polyglycolic acid (PGA) scaffolds and cultured in recirculation column bioreactors to generate cartilage constructs. After seeding, the cell distributions in thick (4.75 mm) and thin (2.15 mm) PGA disks were nonuniform, with higher cell densities accumulating near the top surfaces. Composite scaffolds were developed by suturing together two thin PGA disks after seeding to manipulate the initial cell distribution before bioreactor culture. The effect of medium flow direction in the bioreactors, including periodic reversal of medium flow, was also investigated. The quality of the tissue-engineered cartilage was assessed after 5 weeks of culture in terms of the tissue wet weight, glycosaminoglycan (GAG), total collagen and collagen type II contents, histological analysis of cell, GAG and collagen distributions, and immunohistochemical analysis of collagen types I and II. Significant enhancement in construct quality was achieved using composite scaffolds compared with single PGA disks. Operation of the bioreactors with periodic medium flow reversal instead of unidirectional flow yielded further improvements in tissue weight and GAG and collagen contents with the composite scaffolds. At harvest, the constructs contained GAG concentrations similar to those measured in ex vivo human adult articular cartilage; however, total collagen and collagen type II levels were substantially lower than those in adult tissue. This study demonstrates that the location of regions of high cell density in the scaffold coupled with application of dynamic bioreactor operating conditions has a significant influence on the quality of tissue-engineered cartilage.  相似文献   

8.
The effect of dynamic mechanical shear and compression on the synthesis of human tissue‐engineered cartilage was investigated using a mechanobioreactor capable of simulating the rolling action of articular joints in a mixed fluid environment. Human chondrocytes seeded into polyglycolic acid (PGA) mesh or PGA–alginate scaffolds were precultured in shaking T‐flasks or recirculation perfusion bioreactors for 2.5 or 4 weeks prior to mechanical stimulation in the mechanobioreactor. Constructs were subjected to intermittent unconfined shear and compressive loading at a frequency of 0.05 Hz using a peak‐to‐peak compressive strain amplitude of 2.2% superimposed on a static axial compressive strain of 6.5%. The mechanical treatment was carried out for up to 2.5 weeks using a loading regime of 10 min duration each day with the direction of the shear forces reversed after 5 min and release of all loading at the end of the daily treatment period. Compared with shaking T‐flasks and mechanobioreactor control cultures without loading, mechanical treatment improved the amount and quality of cartilage produced. On a per cell basis, synthesis of both major structural components of cartilage, glycosaminoglycan (GAG) and collagen type II, was enhanced substantially by up to 5.3‐ and 10‐fold, respectively, depending on the scaffold type and seeding cell density. Levels of collagen type II as a percentage of total collagen were also increased after mechanical treatment by up to 3.4‐fold in PGA constructs. Mechanical treatment had a less pronounced effect on the composition of constructs precultured in perfusion bioreactors compared with perfusion culture controls. This work demonstrates that the quality of tissue‐engineered cartilage can be enhanced significantly by application of simultaneous dynamic mechanical shear and compression, with the greatest benefits evident for synthesis of collagen type II. Biotechnol. Bioeng. 2012; 109:1060–1073. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Shahin K  Doran PM 《PloS one》2011,6(8):e23119
Production of tissue-engineered cartilage involves the synthesis and accumulation of key constituents such as glycosaminoglycan (GAG) and collagen type II to form insoluble extracellular matrix (ECM). During cartilage culture, macromolecular components are released from nascent tissues into the medium, representing a significant waste of biosynthetic resources. This work was aimed at developing strategies for improving ECM retention in cartilage constructs and thus the quality of engineered tissues produced in bioreactors. Human chondrocytes seeded into polyglycolic acid (PGA) scaffolds were cultured in perfusion bioreactors for up to 5 weeks. Analysis of the size and integrity of proteoglycans in the constructs and medium showed that full-sized aggrecan was being stripped from the tissues without proteolytic degradation. Application of low (0.075 mL min(-1)) and gradually increasing (0.075-0.2 mL min(-1)) medium flow rates in the bioreactor resulted in the generation of larger constructs, a 4.0-4.4-fold increase in the percentage of GAG retained in the ECM, and a 4.8-5.2-fold increase in GAG concentration in the tissues compared with operation at 0.2 mL min(-1). GAG retention was also improved by pre-culturing seeded scaffolds in flasks for 5 days prior to bioreactor culture. In contrast, GAG retention in PGA scaffolds infused with alginate hydrogel did not vary significantly with medium flow rate or pre-culture treatment. This work demonstrates that substantial improvements in cartilage quality can be achieved using scaffold and bioreactor culture strategies that specifically target and improve ECM retention.  相似文献   

10.
Bioreactor studies of native and tissue engineered cartilage   总被引:12,自引:0,他引:12  
Functional tissue engineering of cartilage involves the use of bioreactors designed to provide a controlled in vitro environment that embodies some of the biochemical and physical signals known to regulate chondrogenesis. Hydrodynamic conditions can affect in vitro tissue formation in at least two ways: by direct effects of hydrodynamic forces on cell morphology and function, and by indirect flow-induced changes in mass transfer of nutrients and metabolites. In the present work, we discuss the effects of three different in vitro environments: static flasks (tissues fixed in place, static medium), mixed flasks (tissues fixed in place, unidirectional turbulent flow) and rotating bioreactors (tissues dynamically suspended in laminar flow) on engineered cartilage constructs and native cartilage explants. As compared to static and mixed flasks, dynamic laminar flow in rotating bioreactors resulted in the most rapid tissue growth and the highest final fractions of glycosaminoglycans and total collagen in both tissues. Mechanical properties (equilibrium modulus, dynamic stiffness, hydraulic permeability) of engineered constructs and explanted cartilage correlated with the wet weight fractions of glycosaminoglycans and collagen. Current research needs in the area of cartilage tissue engineering include the utilization of additional physiologically relevant regulatory signals, and the development of predictive mathematical models that enable optimization of the conditions and duration of tissue culture.  相似文献   

11.
In designing a tissue engineering strategy for cartilage repair, selection of both the bioreactor, and scaffold is important to the development of a mechanically functional tissue. The hydrodynamic environment associated with many bioreactors enhances nutrient transport, but also introduces fluid shear stress, which may influence cellular response. This study examined the combined effects of hydrogel cross-linking and the hydrodynamic environment on early chondrocyte response. Specifically, chondrocytes were encapsulated in poly(ethylene glycol) (PEG) hydrogels having two different cross-linked structures, corresponding to a low and high cross-linking density. Both cross-linked gels yielded high water contents (92% and 79%, respectively) and mesh sizes of 150 and 60 A respectively. Cell-laden PEG hydrogels were cultured in rotating wall vessels (RWV) or under static cultures for up to 5 days. Rotating cultures yielded low fluid shear stresses (< or = 0.11 Pa) at the hydrogel periphery indicating a laminar hydrodynamic environment. Chondrocyte response was measured through total DNA content, total nitric oxide (NO) production, and matrix deposition for glycosaminoglycans (GAG). In static cultures, gel cross-linking had no effect on DNA content, NO production, or GAG production; although GAG production increased with culture time for both cross-linked gels. In rotating cultures, DNA content increased, NO production decreased, and overall GAG production decreased when compared to static controls for the low cross-linked gels. For the high cross-linked gels, the hydrodynamic environment had no effect on DNA content, but exhibited similar results to the low cross-linked gel for NO production, and matrix production. Our findings demonstrated that at early culture times, when there is limited matrix production, the hydrodynamic environment dramatically influences cell response in a manner dependent on the gel cross-linking, which may impact long-term tissue development.  相似文献   

12.
In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor.  相似文献   

13.
Natural cartilage remodels both in vivo and in vitro in response to mechanical stresses, hence mechanical stimulation is believed to be a potential tool to modulate extra-cellular matrix synthesis in tissue-engineered cartilage. Fluid-induced shear is known to enhance chondrogenesis in engineered cartilage constructs. The quantification of the hydrodynamic environment is a condition required to study the biochemical response to shear of 3D engineered cell systems. We developed a computational model of culture medium flow through the microstructure of a porous scaffold, during direct- perfused culture. The 3D solid model of the scaffold micro-geometry was reconstructed from 250 micro-computed tomography (micro-CT) images. The results of the fluid dynamic simulations were analyzed at the central portions of the fluid domain, to avoid boundary effects. The average, median and mode shear stress values calculated at the scaffold walls were 3.48, 2.90, and 2.45 mPa respectively, at a flow rate of 0.5 cm(3)/min, perfused through a 15 mm diameter scaffold, at an inlet fluid velocity of 53 microm/s. These results were compared to results estimated using a simplified micro-scale model and to results estimated using an analytical macro-scale porous model. The predictions given by the CT-based model are being used in conjunction with an experimental bioreactor model, in order to quantify the effects of fluid-dynamic shear on the growth modulation of tissue-engineered cartilage constructs, to potentially enhance tissue growth in vitro.  相似文献   

14.
Surface modified bioactive glass with surface properties akin to those of the bone mineral phase is an attractive candidate for use as a microcarrier material for 3-D growth of bone-like tissue in rotating wall vessel bioreactors (RWVs). The critical surface properties of this material are the result of reaction in solution. Because an RWV environment is completely different from conditions previously employed for bioactive glass testing, a detailed study of the surface reactions is warranted. Under properly chosen conditions, RWVs can also provide a simulated microgravity environment for the bioactive glass (BG) particles. In this sense, this study is also a report on the behavior of a bioactive material under microgravity conditions simulated on earth. A high aspect ratio vessel (HARV) and carefully selected experimental conditions enabled the simulation of microgravity in our laboratory. A complimentary numerical study was simultaneously conducted to ascertain the appropriateness of the experimental parameters (particle size, particle density, medium density, medium viscosity, and rotational speed) that ensure simulated microgravity conditions for the glass particles in the HARV. Physiological solutions (pH 7.4) with and without electrolytes, and also with serum proteins, were used to study the change in surface character resulting from simulated microgravity. Control tests at normal gravity, both static and dynamic, were also conducted. Solution and surface analyses revealed major effects of simulated microgravity. The rates of leaching of constituent ions (Si-, Ca-, and P-ions) were greatly increased in all solutions tested. The enhanced dissolution was followed by the enhanced formation of bone-like minerals at the BG surface. This enhancement is expected to affect adsorption of serum proteins and attachment molecules, which, in turn, may favorably affect bone cell adhesion and function. The findings of the study are important for the use of bioactive materials as microcarriers to generate and analyze 3-D bone-like tissue structures in bioreactors under microgravity conditions or otherwise. Copyright John Wiley & Sons, Inc.  相似文献   

15.
Tissue engineered cartilage can be grown in vitro if the necessary physical and biochemical factors are present in the tissue culture environment. Cell metabolism and tissue composition were studied for engineered cartilage cultured for 5 weeks using bovine articular chondrocytes, polymer scaffolds (5 mm diameter x 2 mm thick fibrous discs), and rotating bioreactors. Medium pH and concentrations of oxygen, carbon dioxide, glucose, lactate, ammonia, and glycosoaminoglycan (GAG) were varied by altering the exchange rates of gas and medium in the bioreactors. Cell-polymer constructs were assessed with respect to histomorphology, biochemical composition and metabolic activity. Low oxygen tension ( approximately 40 mmHg) and low pH ( approximately 6.7) were associated with anaerobic cell metabolism (yield of lactate on glucose, YL/G, of 2.2 mol/mol) while higher oxygen tension ( approximately 80 mmHg) and higher pH ( approximately 7.0) were associated with more aerobic cell metabolism (YL/G of 1.65-1.79 mol/mol). Under conditions of infrequent medium replacement (50% once per week), cells utilized more economical pathways such that glucose consumption and lactate production both decreased, cell metabolism remained relatively aerobic (YL/G of 1.67 mol/mol) and the resulting constructs were cartilaginous. More aerobic conditions generally resulted in larger constructs containing higher amounts of cartilaginous tissue components, while anaerobic conditions suppressed chondrogenesis in 3D tissue constructs.  相似文献   

16.
This is the first successful report of the rapid regeneration of three-dimensional large and homogeneous cartilaginous tissue from rabbit bone marrow cells without a scaffold using a rotating wall vessel (RWV) bioreactor, which simulates a microgravity environment for cells. Bone marrow cells cultured for 3 weeks in DMEM were resuspended and cultured for 4 weeks in the chondrogenic medium within the vessel. Large cylindrical cartilaginous tissue with dimensions of (1.25 +/- 0.06) x (0.60 +/- 0.08) cm (height x diameter) formed. Their cartilage marker expression was confirmed by mRNA expressions of aggrecan, collagen type I and II, and glycosaminoglycan (GAG)/DNA ratio. Their cartilaginous properties were demonstrated by toluidine blue, safranin-O staining, and polarization.  相似文献   

17.
Production of the antibacterial polypeptide microcin B17 (MccB17) by Escherichia coli ZK650 was inhibited by simulated microgravity. The site of MccB17 accumulation was found to be different, depending on whether the organism was grown in shaking flasks or in rotating bioreactors designed to establish a simulated microgravity environment. In flasks, the accumulation was cellular, but in the reactors, virtually all the microcin was found in the medium. The change from a cellular site to an extracellular one was apparently not a function of gravity, since extracellular production occurred in these bioreactors, irrespective of whether they were operated in the simulated microgravity or normal gravity mode. More probably, excretion is due to the much lower degree of shear stress in the bioreactors. Addition of even a single glass bead to the 50-ml medium volume in the bioreactor created enough shear to change the site of MccB17 accumulation from the medium to the cells.  相似文献   

18.
In a continuing study of microbial secondary metabolism in simulated microgravity, we have examined gramicidin S (GS) production by Bacillus brevis strain Nagano in NASA High Aspect Rotating Vessels (HARVs), which are designed to simulate some aspects of microgravity. Growth and GS production were found to occur under simulated microgravity. When performance under simulated microgravity was compared with that under normal gravity conditions in the bioreactors, GS production was found to be unaffected by simulated microgravity. The repressive effect of glycerol in flask fermentations was not observed in the HARV. Thus the negative effect of glycerol on specific GS formation is dependent on shear and/or vessel geometry, not gravity. Received: 7 August 1996 / Accepted: 17 September 1996  相似文献   

19.
Effects of mixing intensity on tissue-engineered cartilage   总被引:7,自引:0,他引:7  
Mechanical forces regulate the structure and function of many tissues in vivo; recent results indicate that the mechanical environment can decisively influence the development of engineered tissues cultured in vitro. To investigate the effects of the hydrodynamic environment on tissue-engineered cartilage, primary bovine calf chondrocytes were seeded on fibrous polyglycolic acid meshes and cultured in spinner flasks either statically or at one of nine different turbulent mixing intensities. In medium from unmixed flasks, CO(2) accumulated and O(2) was depleted, whereas in medium from mixed flasks the concentrations of both gases approached their equilibrium values. Relative to constructs exposed to nonmixed conditions, constructs exposed to mixing contained higher fractions of collagen, synthesized and released more GAG, but contained lower fractions of GAG. Across the wide range of mixing intensities investigated, the presence or absence of mixing, but not the intensity of the mixing, was the primary determinant of the GAG and collagen content in the constructs. The all-or-none nature of these responses may provide insight into the mechanism(s) by which engineered cartilage perceives changes in its hydrodynamic environment and responds by modifying extracellular matrix production and release. 2001 John Wiley & Sons, Inc.  相似文献   

20.
Achieving sufficient functional properties prior to implantation remains a significant challenge for the development of tissue engineered cartilage. Many studies have shown chondrocytes respond well to various mechanical stimuli, resulting in the development of bioreactors capable of transmitting forces to articular cartilage in vitro. In this study, we describe the production of sizeable, tissue engineered cartilage using a novel scaffold-free approach, and determine the effect of perfusion and mechanical stimulation from a C9-x Cartigen bioreactor on the properties of the tissue engineered cartilage. We created sizable tissue engineered cartilage from porcine chondrocytes using a scaffold-free approach by centrifuging a high-density chondrocyte cell-suspension onto an agarose layer in a 50 mL tube. The gross and histological appearances, biochemical content, and mechanical properties of constructs cultured in the bioreactor for 4 weeks were compared to constructs cultured statically. Mechanical properties were determined from unconfined uniaxial compression tests. Constructs cultured in the bioreactor exhibited an increase in total GAG content, equilibrium compressive modulus, and dynamic modulus versus static constructs. Our study demonstrates the C9-x CartiGen bioreactor is able to enhance the biomechanical and biochemical properties of scaffold-free tissue engineered cartilage; however, no additional enhancement was seen between loaded and perfused groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号