首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerase chain reaction primers were designed to target a region of the Cryptosporidium parvum beta-tubulin gene spanning an intron. Amplification products contained 11 polymorphic positions, representing a sequence divergence of 1.8%, which discriminated between isolates of C. parvum found solely in humans (genotype 1) and those found in humans and animals (genotype 2). Seven of the polymorphic sites were located outside of the intron and the polymorphism between isolates was readily demonstrated by HaeIII restriction digestion. However, all of the sequences from genotype 1 human-derived oocysts isolated in the United States and Australia were conserved. Also, there were no sequence differences between bovine isolates obtained from both continents. Therefore, isolates could not be differentiated based on geographic source of origin.  相似文献   

2.
Within the coccidia, morphological features of the oocyst stage at the light microscope level have been used more than any other single characteristic to designate genus and species. The aim of this study was to conduct morphometric analysis on a range of Cryptosporidium spp. isolates and to compare morphological data between several genotypes of C. parvum and a second species C. canis, as well as a variation within a specific genotype (the human genotype), with genetic data at 2 unlinked loci (18S ribonucleic deoxyribonucleic acid and HSP 70) to evaluate the usefulness of morphometric data in delineating species within Cryptosporidium. Results indicate that morphology could not differentiate between oocysts from C. parvum genotypes and oocysts from C. canis, whereas genetic analysis clearly differentiated between the two. The small size of the Cryptosporidium spp. oocyst, combined with the very limited characters for analysis, suggests that more reliance should be placed on genetic differences, combined with biological variation, when delineating species within Cryptosporidium.  相似文献   

3.
The genetic diversity of Cryptosporidium in reptiles was analyzed by PCR-restriction fragment length polymorphism and sequence analysis of the small subunit rRNA gene. A total of 123 samples were analyzed, of which 48 snake samples, 24 lizard samples, and 3 tortoise samples were positive for Cryptosporidium: Nine different types of Cryptosporidium were found, including Cryptosporidium serpentis, Cryptosporidium desert monitor genotype, Cryptosporidium muris, Cryptosporidium parvum bovine and mouse genotypes, one C. serpentis-like parasite in a lizard, two new Cryptosporidium spp. in snakes, and one new Cryptosporidium sp. in tortoises. C. serpentis and the desert monitor genotype were the most common parasites and were found in both snakes and lizards, whereas the C. muris and C. parvum parasites detected were probably the result of ingestion of infected rodents. Sequence and biologic characterizations indicated that the desert monitor genotype was Cryptosporidium saurophilum. Two host-adapted C. serpentis genotypes were found in snakes and lizards.  相似文献   

4.
We describe the discovery of polymorphisms in the Cryptosporidium oocyst wall protein (COWP) gene conferring a novel restriction fragment length polymorphism (RFLP) pattern in 26/60 (43%) isolates from a flock of sheep sampled following a waterborne outbreak of human cryptosporidiosis. The sheep isolates showed identical PCR-RFLP patterns to each other by COWP genotyping but different from those of most currently recognised genotypes, including the major Cryptosporidium parvum genotypes 1 and 2. Sequence analysis of the 550bp amplicon from the COWP gene was compared with a DNA coding region employed in previous studies and showed the novel isolate to differ from other Cryptosporidium species and C. parvum isolates by 7-21%. The sheep-derived isolates were compared at this and further three Cryptosporidium gene loci with isolates from other farmed animals. The loci employed were one in the thrombospondin related adhesive protein (TRAP-C2) gene and two in the 70kDa heat shock protein (HSP70) gene (CPHSP1 and 2). Other animal samples tested in our laboratory were from clinically ill animals and all contained C. parvum genotype 2. The sheep in which the novel isolate was identified were healthy and showed no symptoms of cryptosporidiosis, and the novel sheep isolate could represent a non-pathogenic strain. Our studies suggest that a previously undetected Cryptosporidium sub-type may exist in sheep populations, reflecting the increasingly recognised diversity within the parasite genus.  相似文献   

5.
Genomic DNAs from human Cryptosporidium isolates previously typed by analysis of the 18S ribosomal DNA locus (Cryptosporidium parvum bovine genotype, C. parvum human genotype, Cryptosporidium meleagridis, and Cryptosporidium felis) were used to amplify the diagnostic fragment described by Laxer et al. (M. A. Laxer, B. K. Timblin, and R. J. Patel, Am. J. Trop. Med. Hyg., 45:688-694, 1991). The obtained 452-bp amplified fragments were sequenced and aligned with the homologous Cryptosporidium wrairi sequence. Polymorphism was exploited to develop a restriction fragment length polymorphism method able to discriminate Cryptosporidium species and C. parvum genotypes.  相似文献   

6.
Cryptosporidium, an enteric parasite of humans and a wide range of other mammals, presents numerous challenges to the supply of safe drinking water. We performed a wildlife survey, focusing on white-tailed deer and small mammals, to assess whether they may serve as environmental sources of Cryptosporidium. A PCR-based approach that permitted genetic characterization via sequence analysis was applied to wildlife fecal samples (n = 111) collected from September 1996 to July 1998 from three areas in lower New York State. Southern analysis revealed 22 fecal samples containing Cryptosporidium small-subunit (SSU) ribosomal DNA; these included 10 of 91 white-tailed deer (Odocoileus virginianus) samples, 3 of 5 chipmunk (Tamias striatus) samples, 1 of 2 white-footed mouse (Peromyscus leucopus) samples, 1 of 2 striped skunk (Mephitis mephitis) samples, 1 of 5 racoon (Procyon lotor) samples, and 6 of 6 muskrat (Ondatra zibethicus) samples. All of the 15 SSU PCR products sequenced were characterized as Cryptosporidium parvum; two were identical to genotype 2 (bovine), whereas the remainder belonged to two novel SSU sequence groups, designated genotypes 3 and 4. Genotype 3 comprised four deer-derived sequences, whereas genotype 4 included nine sequences from deer, mouse, chipmunk, and muskrat samples. PCR analysis was performed on the SSU-positive fecal samples for three other Cryptosporidium loci (dihydrofolate reductase, polythreonine-rich protein, and beta-tubulin), and 8 of 10 cloned PCR products were consistent with C. parvum genotype 2. These data provide evidence that there is sylvatic transmission of C. parvum involving deer and other small mammals. This study affirmed the importance of wildlife as potential sources of Cryptosporidium in the catchments of public water supplies.  相似文献   

7.
Cryptosporidium canis n. sp. from domestic dogs.   总被引:9,自引:0,他引:9  
Oocysts of Cryptosporidium, from the feces of a naturally infected dog and from an HIV-infected human, were identified as the previously reported canine genotype of Cryptosporidium parvum, hereafter referred to as Cryptosporidium canis n. sp. Also among the oocysts from the dog, a trace amount of C. parvum bovine genotype was detected. Cryptosporidium canis oocysts from both the dog and human were infectious for calves. Oocysts excreted by calf 1 (dog source) were approximately 90% C. canis and 10% C. parvum, whereas those excreted by calf 3 (human source) were 100% C. canis. Oocysts from calf 1 infected calf 2 resulting in excretion by calf 2 of oocysts approximately 90% C. parvum and 10% C. canis. Oocysts of C. canis were not infectious for BALB/c neonatal mice or immunosuppressed C57 juvenile mice, although all control mice became infected with the C. parvum Beltsville isolate. Oocysts of C. canis from calf 1 and the human were structurally indistinguishable from oocysts of the C. parvum Beltsville isolate (bovine). However, C. canis oocysts differed markedly at the molecular level from all known species of Cryptosporidium based on sequence data for the 18S rDNA and the HSP 70 gene. The differences in genetics and host specificity clearly differentiate C. canis as a new species.  相似文献   

8.
We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.  相似文献   

9.
A polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of a 587-bp region of the Cryptosporidium parvum 70-kDa heat shock protein (HSP70) gene was developed for the detection and discrimination of the two major genotypes of C. parvum, genotype 1 and genotype 2. Ten Cryptosporidium isolates from non-immunocompromised people were identified as genotypes 1 and 2 (five each) by DNA sequencing of the 587-bp PCR product. This distinction was also achieved with the combination of two endonucleases, HinfI and ScaI, which generated a specific pattern for each genotype. A thorough screening of published sequences showed that this combination of enzymes could also be used for the discrimination of other species/genotypes of Cryptosporidium, especially Cryptosporidium meleagridis and the 'dog' genotype of C. parvum, both of which are infectious in humans. The PCR, conducted on genotypes 1 and 2 of C. parvum, could detect one oocyst per reaction. This new and sensitive genotyping procedure should be of particular interest when applied to the monitoring of water resources in which low concentrations of parasites usually occur.  相似文献   

10.
Biological data support the hypothesis that there are multiple species in the genus Cryptosporidium, but a recent analysis of the available genetic data suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxonomy of this parasite genus, we characterized the small-subunit rRNA genes of Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris, and Cryptosporidium serpentis and performed a phylogenetic analysis of the genus Cryptosporidium. Our study revealed that the genus Cryptosporidium contains the phylogenetically distinct species C. parvum, C. muris, C. baileyi, and C. serpentis, which is consistent with the biological characteristics and host specificity data. The Cryptosporidium species formed two clades, with C. parvum and C. baileyi belonging to one clade and C. muris and C. serpentis belonging to the other clade. Within C. parvum, human genotype isolates and guinea pig isolates (known as Cryptosporidium wrairi) each differed from bovine genotype isolates by the nucleotide sequence in four regions. A C. muris isolate from cattle was also different from parasites isolated from a rock hyrax and a Bactrian camel. Minor differences were also detected between C. serpentis isolates from snakes and lizards. Based on the genetic information, a species- and strain-specific PCR-restriction fragment length polymorphism diagnostic tool was developed.  相似文献   

11.
Cryptosporidium hominis, which has an anthroponotic transmission cycle and Cryptosporidium parvum, which is zoonotic, are the primary species of Cryptosporidium that infect humans. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 7 human and 15 cattle cases of sporadic cryptosporidiosis in rural western NSW during the period from November 2005 to January 2006. The species/genotype of isolates was determined by PCR sequence analysis of the 18S rRNA and C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Fourteen of 15 cattle-derived isolates were identified as C. parvum and 1 as a C. bovis/C. parvum mixture. Of the human isolates, 4 were C. parvum and 3 were C. hominis. Two different subgenotypes were identified with the human C. hominis isolates and six different subgenotypes were identified within the C. parvum species from humans and cattle. All four of the C. parvum subtypes found in humans were also found in the cattle, indicating that zoonotic transmission may be an important contributor to sporadic human cases cryptosporidiosis in rural NSW.  相似文献   

12.
Nucleotide sequences of the Cryptosporidium oocyst wall protein (COWP) gene were obtained from various Cryptosporidium spp. (C. wrairi, C. felis, C. meleagridis, C. baileyi, C. andersoni, C. muris, and C. serpentis) and C. parvum genotypes (human, bovine, monkey, marsupial, ferret, mouse, pig, and dog). Significant diversity was observed among species and genotypes in the primer and target regions of a popular diagnostic PCR. These results provide useful information for COWP-based molecular differentiation of Cryptosporidium spp. and genotypes.  相似文献   

13.
Little is known about the genetic characteristics, distribution, and transmission cycles of Cryptosporidium species that cause human disease in New Zealand. To address these questions, 423 fecal specimens containing Cryptosporidium oocysts and obtained from different regions were examined by the PCR-restriction fragment length polymorphism technique. Indeterminant results were resolved by DNA sequence analysis. Two regions supplied the majority of isolates: one rural and one urban. Overall, Cryptosporidium hominis accounted for 47% of the isolates, with the remaining 53% being the C. parvum bovine genotype. A difference, however, was observed between the Cryptosporidium species from rural and urban isolates, with C. hominis dominant in the urban region, whereas the C. parvum bovine genotype was prevalent in rural New Zealand. A shift in transmission cycles was detected between seasons, with an anthroponotic cycle in autumn and a zoonotic cycle in spring. A novel Cryptosporidium sp., which on DNA sequence analysis showed a close relationship with C. canis, was detected in two unrelated children from different regions, illustrating the genetic diversity within this genus.  相似文献   

14.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

15.
To further validate previous observations in the taxonomy of Cryptosporidium parasites, the phylogenetic relationship was analyzed among various Cryptosporidium parasites at the actin locus. Nucleotide sequences of the actin gene were obtained from 9 putative Cryptosporidium species (C. parvum, C. andersoni, C. baileyi, C. felis, C. meleagridis, C. muris, C. saurophilum, C. serpentis, and C. wrairi) and various C. parvum genotypes. After multiple alignment of the obtained actin sequences, genetic distances were measured, and phylogenetic trees were constructed. Results of the analysis confirmed the presence of genetically distinct species within Cryptosporidium and various distinct genotypes within C. parvum. The phylogenetic tree constructed on the basis of the actin sequences was largely in agreement with previous results based on small subunit rRNA, 70-kDa heat shock protein, and Cryptosporidium oocyst wall protein genes. The Cryptosporidium species formed 2 major clades; isolates of C. andersoni, C. muris, and C. serpentis formed the first major group, whereas isolates of all other species, as well as various C. parvum genotypes, formed the second major group. Intragenotype variations were low or absent at this locus.  相似文献   

16.
Sequence alignment of a polymerase chain reaction-amplified 713-base pair region of the Cryptosporidium 18S rDNA gene was carried out on 15 captive reptile isolates from different geographic locations and compared to both Cryptosporidium parvum and Cryptosporidium muris isolates. Random amplified polymorphic DNA (RAPD) analysis was also performed on a smaller number of these samples. The data generated by both techniques were significantly correlated (P < 0.002), providing additional evidence to support the clonal population structure hypothesis for Cryptosporidium. Phylogenetic analysis of both 18S sequence information and RAPD analysis grouped the majority of reptile isolates together into 1 main group attributed to Cryptosporidium serpentis, which was genetically distinct but closely related to C. muris. A second genotype exhibited by 1 reptile isolate (S6) appeared to be intermediate between C. serpentis and C. muris but grouped most closely with C. muris, as it exhibited 99.15% similarity with C. muris and only 97.13% similarity with C. serpentis. The third genotype identified in 2 reptile isolates was a previously characterized 'mouse' genotype that grouped closely with bovine and human C. parvum isolates.  相似文献   

17.
18.
Isolates of Cryptosporidium were collected from 3 species of woodland and field rodents (Clethrionomys glareolus, Microtus arvalis, and Apodemus flavicollis) and were characterized by polymerase chain reaction amplification and sequencing of fragments of the oocyst wall protein (COWP) gene and of the 18S ribosomal RNA gene. Sequence analysis of these markers revealed that the animals were infected with C. parvum, and that the genotype involved was almost identical to the mouse genotype previously described from Mus musculus. Thus, small rodents should be considered as an important reservoir of C. parvum genotypes closely related to the zoonotic genotype 2 and potentially hazardous to humans.  相似文献   

19.
Recent molecular evidence suggests that different species and/or genotypes of Cryptosporidium display strong host specificity, altering our perceptions regarding the zoonotic potential of this parasite. Molecular forensic profiling of the small-subunit rRNA gene from oocysts enumerated on microscope slides by U.S. Environmental Protection Agency method 1623 was used to identify the range and prevalence of Cryptosporidium species and genotypes in the South Nation watershed in Ontario, Canada. Fourteen sites within the watershed were monitored weekly for 10 weeks to assess the occurrence, molecular composition, and host sources of Cryptosporidium parasites impacting water within the region. Cryptosporidium andersoni, Cryptosporidium muskrat genotype II, Cryptosporidium cervine genotype, C. baileyi, C. parvum, Cryptosporidium muskrat genotype I, the Cryptosporidium fox genotype, genotype W1, and genotype W12 were detected in the watershed. The molecular composition of the Cryptosporidium parasites, supported by general land use analysis, indicated that mature cattle were likely the main source of contamination of the watershed. Deer, muskrats, voles, birds, and other wildlife species, in addition to sewage (human or agricultural) may also potentially impact water quality within the study area. Source water protection studies that use land use analysis with molecular genotyping of Cryptosporidium parasites may provide a more robust source-tracking tool to characterize fecal impacts in a watershed. Moreover, the information is vital for assessing environmental and human health risks posed by water contaminated with zoonotic and/or anthroponotic forms of Cryptosporidium.  相似文献   

20.
Evaluation of Cryptosporidium parvum genotyping techniques.   总被引:7,自引:0,他引:7  
We evaluated the specificity and sensitivity of 11 previously described species differentiation and genotyping PCR protocols for detection of Cryptosporidium parasites. Genomic DNA from three species of Cryptosporidium parasites (genotype 1 and genotype 2 of C. parvum, C. muris, and C. serpentis), two Eimeria species (E. neischulzi and E. papillata), and Giardia duodenalis were used to evaluate the specificity of primers. Furthermore, the sensitivity of the genotyping primers was tested by using genomic DNA isolated from known numbers of oocysts obtained from a genotype 2 C. parvum isolate. PCR amplification was repeated at least three times with all of the primer pairs. Of the 11 protocols studied, 10 amplified C. parvum genotypes 1 and 2, and the expected fragment sizes were obtained. Our results indicate that two species-differentiating protocols are not Cryptosporidium specific, as the primers used in these protocols also amplified the DNA of Eimeria species. The sensitivity studies revealed that two nested PCR-restriction fragment length polymorphism (RFLP) protocols based on the small-subunit rRNA and dihydrofolate reductase genes are more sensitive than single-round PCR or PCR-RFLP protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号