首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lai D  Sakkas D  Huang Y 《RNA (New York, N.Y.)》2006,12(8):1446-1449
Loss of fragile X mental retardation protein, FMRP, causes the fragile X syndrome. Highly expressed in the brain and testis, FMRP has been implicated in the transport and translation of specific mRNAs. Here we show that FMRP and the mRNA nuclear export factor NXF2 co-express in the mouse male germ cells and hippocampal neurons and that FMRP associates with NXF2 but not with its close relative NXF1. We thus hypothesize that FMRP and NXF2 may act in concert to promote the nucleocytoplasmic transport of specific mRNAs in male germ cells and neurons.  相似文献   

2.
3.
Fragile X Mental Retardation Syndrome is the most common form of hereditary mental retardation, and is caused by defects in the FMR1 gene. FMR1 is an RNA-binding protein and the syndrome results from lack of expression of FMR1 or expression of a mutant protein that is impaired in RNA binding. The specific function of FMR1 is not known. As a step towards understanding the function of FMR1 we searched for proteins that interact with it in vivo. We have cloned and sequenced a protein that interacts tightly with FMR1 in vivo and in vitro. This novel protein, FXR2, is very similar to FMR1 (60% identity). FXR2 encodes a 74 kDa protein which, like FMR1, contains two KH domains, has the capacity to bind RNA and is localized to the cytoplasm. The FXR2 gene is located on human chromosome 17 at 17p13.1. In addition, FMR1 and FXR2 interact tightly with the recently described autosomal homolog FXR1. Each of these three proteins is capable of forming heteromers with the others, and each can also form homomers. FXR1 and FXR2 are thus likely to play important roles in the function of FMR1 and in the pathogenesis of the Fragile X Mental Retardation Syndrome.  相似文献   

4.
Fragile X syndrome represents the most common inherited cause of mental retardation. It is caused by a stretch of CGG repeats within the fragile X gene, which increases in length as it is transmitted from generation to generation. Once the repeat exceeds a threshold length, no protein is produced, resulting in the fragile X phenotype. Both X chromosome inactivation and inactivation of the FMR1 gene are the result of methylation. X inactivation occurs earlier than inactivation of the FMR1 gene. The instability to a full mutation is dependent on the sex of the transmitting parent and occurs only from mother to child. For most X-chromosomal diseases, female carriers do not express the phenotype. A clear exception is fragile X syndrome. It is clear that more than 50% of the neurons have to express the protein to ensure a normal phenotype in females. This means that a normal phenotype in female carriers of a full mutation is accompanied by a distortion of the normal distribution of X inactivation.  相似文献   

5.
6.
7.
8.
RNA and microRNAs in fragile X mental retardation   总被引:1,自引:0,他引:1  
Fragile X syndrome is caused by the loss of an RNA-binding protein called FMRP (for fragile X mental retardation protein). FMRP seems to influence synaptic plasticity through its role in mRNA transport and translational regulation. Recent advances include the identification of mRNA ligands, FMRP-mediated mRNA transport and the neuronal consequence of FMRP deficiency. FMRP was also recently linked to the microRNA pathway. These advances provide mechanistic insight into this disorder, and into learning and memory in general.  相似文献   

9.
Fragile X Syndrome (FraX) is a broad-spectrum neurological disorder with symptoms ranging from hyperexcitability to mental retardation and autism. Loss of the fragile X mental retardation 1 (fmr1) gene product, the mRNA-binding translational regulator FMRP, causes structural over-elaboration of dendritic and axonal processes, as well as functional alterations in synaptic plasticity at maturity. It is unclear, however, whether FraX is primarily a disease of development, a disease of plasticity or both: a distinction that is vital for engineering intervention strategies. To address this crucial issue, we have used the Drosophila FraX model to investigate the developmental function of Drosophila FMRP (dFMRP). dFMRP expression and regulation of chickadee/profilin coincides with a transient window of late brain development. During this time, dFMRP is positively regulated by sensory input activity, and is required to limit axon growth and for efficient activity-dependent pruning of axon branches in the Mushroom Body learning/memory center. These results demonstrate that dFMRP has a primary role in activity-dependent neural circuit refinement during late brain development.  相似文献   

10.
The fragile X syndrome, an X-linked disease, is the most frequent cause of inherited mental retardation. The syndrome results from the absence of expression of the FMR1 gene (fragile mental retardation 1) owing to the expansion of a CGG trinucleotide repeat located in the 5' untranslated region of the gene and the subsequent methylation of its CpG island. The FMR1 gene product (FMRP) is a cytoplasmic protein that contains two KH domains and one RGG box, characteristics of RNA-binding proteins. FMRP is associated with mRNP complexes containing poly(A)+mRNA within actively translating polyribosomes and contains nuclear localization and export signals making it a putative transporter (chaperone) of mRNA from the nucleus to the cytoplasm. FMRP is the archetype of a novel family of cytoplasmic RNA-binding proteins that includes FXR1P and FXR2P. Both of these proteins are very similar in overall structure to FMRP and are also associated with cytoplasmic mRNPs. Members of the FMR family are widely expressed in mouse and human tissues, albeit at various levels, and seem to play a subtle choreography of expression. FMRP is most abundant in neurons and is absent in muscle. FXR1P is strongly expressed in muscle and low levels are detected in neurons. The complex expression patterns of the FMR1 gene family in different cells and tissues suggest that independent, however similar, functions for each of the three FMR-related proteins might be expected in the selection and metabolism of tissue-specific classes of mRNA. The molecular mechanisms altered in cells lacking FMRP still remain to be elucidated as well as the putative role(s) of FXR1P and FXR2P as compensatory molecules.  相似文献   

11.
Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence of Fragile X syndrome. We show that the Ile304Asn mutation both perturbs the structure and destabilizes the protein.  相似文献   

12.
13.
Summary We report an extended family in which two brothers with a fragile X chromosome are mentally retarded while a third brother with the fragile site is both phenotypically and mentally normal. The study of six probes detecting restriction fragment length polymorphisms on either sides of the fragile site Xq27 confirmed that the fragile X regions inherited by these three brothers were identical from DXS 102 to the telomere. These data highlight the heterogeneity of the fragile X syndrome, which is discussed in the framework of the different hypotheses previously proposed.  相似文献   

14.
Dolzhanskaya N  Merz G  Denman RB 《Biochemistry》2006,45(34):10385-10393
The fragile X mental retardation protein (FMRP) is an RNA binding protein that is methylated by an endogenous methyltransferase in rabbit reticulocyte lysates. We mapped the region of methylation to the C-terminal arginine-glycine-rich residues encoded by FMR1 exon 15. We additionally demonstrated that mutation of R(544) to K reduced the endogenous methylation by more than 80%, while a comparable mutant R(546)-K reduced the endogenous methylation by 20%. These mutations had no effect on the subcellular distribution of FMRP, recapitulating previous results using the methyltransferase inhibitor adenosine-2',3'-dialdehyde. Using purified recombinant protein arginine methyltransferases (PRMTs), we showed that the C-terminal domain could be methylated by PRMT1, PRMT3, and PRMT4 in vitro and that both the R(544)-K mutant and the R(546)-K mutant were refractory toward these enzymes. We also report that truncating the N-terminal 12 residues encoded by FMR1 exon 15, which occurs naturally via alternative splicing, had no effect on FMRP methylation, demonstrating conclusively that phosphorylation of serine residue 500 (S(500)), one of the 12 residues, was not required for methylation. Nevertheless, truncating 13 additional amino acids, as occurs in the smallest alternatively spliced variant of FMR1 exon 15, reduced methylation by more than 85%. This suggests that differential expression and methylation of the FMRP exon 15 variants may be an important means of regulating target mRNA translation, which is consonant with recently demonstrated functional effects mediated by inhibiting FMRP methylation in cultured cells.  相似文献   

15.
From personal observations and reported cases of translocation X-Autosome, a study of the breakpoint showed that Xp11 is more frequently associated to mental retardation. This finding is in agreement with linkage analysis in families with X-linked mental retardation non X-fra.  相似文献   

16.
Fragile X syndrome is the most common inherited form of mental retardation. It is caused by loss of FMR1 gene activity due to either lack of expression or expression of a mutant form of the protein. In mammals, FMR1 is a member of a small protein family that consists of FMR1, FXR1, and FXR2. All three members bind RNA and contain sequence motifs that are commonly found in RNA-binding proteins, including two KH domains and an RGG box. The FMR1/FXR proteins also contain a 60S ribosomal subunit interaction domain and a protein-protein interaction domain which mediates homomer and heteromer formation with each family member. Nevertheless, the specific molecular functions of FMR1/FXR proteins are unknown. Here we report the cloning and characterization of a Drosophila melanogaster homolog of the mammalian FMR1/FXR gene family. This first invertebrate homolog, termed dfmr1, has a high degree of amino acid sequence identity/similarity with the defined functional domains of the FMR1/FXR proteins. The dfmr1 product binds RNA and is similar in subcellular localization and embryonic expression pattern to the mammalian FMR1/FXR proteins. Overexpression of dfmr1 driven by the UAS-GAL4 system leads to apoptotic cell loss in all adult Drosophila tissues examined. This phenotype is dependent on the activity of the KH domains. The ability to induce a dominant phenotype by overexpressing dfmr1 opens the possibility of using genetic approaches in Drosophila to identify the pathways in which the FMR1/FXR proteins function.  相似文献   

17.
18.
Fragile X syndrome, the most common cause of inherited mental retardation, is caused by the absence of the fragile X mental retardation protein (FMRP). The emerging picture is that FMRP is involved in repression of translation through a complex network of protein-protein and protein-RNA interactions. Very little structural information is, however, available for FMRP that could help to understand its function. In particular, no structural studies are available about the N-terminus of the protein, a highly conserved region which is involved in several molecular interactions. Here, we explore systematically the ability of the FMRP N-terminus to form independently folded units (domains). We produced deletion mutants and tested their fold and functional properties by mutually complementary biophysical and biochemical techniques. On the basis of our data, we conclude that the N-terminus contains a domain, that we named NDF, comprising the first 134 amino acids. Most interestingly, NDF comprises two copies of a newly identified Agenet motif. NDF is thermally stable and has a high content of beta structure. In addition to being able to bind to RNA and to recognize some of the FMRP interacting proteins, NDF forms stable dimers and is able to interact, although weakly, with the full-length protein. Our data provide conclusive evidence that NDF is a novel motif for protein-protein and protein-RNA interactions and contains a previously unidentified dimerization site.  相似文献   

19.
Lee HY  Ge WP  Huang W  He Y  Wang GX  Rowson-Baldwin A  Smith SJ  Jan YN  Jan LY 《Neuron》2011,72(4):630-642
How transmitter receptors modulate neuronal signaling by regulating voltage-gated ion channel expression remains an open question. Here we report dendritic localization of mRNA of Kv4.2 voltage-gated potassium channel, which regulates synaptic plasticity, and its local translational regulation by fragile X mental retardation protein (FMRP) linked to fragile X syndrome (FXS), the most common heritable mental retardation. FMRP suppression of Kv4.2 is revealed by elevation of Kv4.2 in neurons from fmr1 knockout (KO) mice and in neurons expressing Kv4.2-3'UTR that binds FMRP. Moreover, treating hippocampal slices from fmr1 KO mice with Kv4 channel blocker restores long-term potentiation induced by moderate stimuli. Surprisingly, recovery of Kv4.2 after N-methyl-D-aspartate receptor (NMDAR)-induced degradation also requires FMRP, likely due to NMDAR-induced FMRP dephosphorylation, which turns off FMRP suppression of Kv4.2. Our study of FMRP regulation of Kv4.2 deepens our knowledge of NMDAR signaling and reveals a FMRP target of potential relevance to FXS.  相似文献   

20.
Loss of Fragile X mental retardation protein (FMRP) function causes the highly prevalent Fragile X syndrome [1 and 2]. Identifying targets for the RNA binding FMRP is a major challenge and an important goal of research into the pathology of the disease. Perturbations in neuronal development and circadian behavior are seen in Drosophila dfmr1 mutants. Here we show that regulation of the actin cytoskeleton is under dFMRP control. dFMRP binds the mRNA of the Drosophila profilin homolog and negatively regulates Profilin protein expression. An increase in Profilin mimics the phenotype of dfmr1 mutants. Conversely, decreasing Profilin levels suppresses dfmr1 phenotypes. These data place a new emphasis on actin misregulation as a major problem in fmr1 mutant neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号