共查询到20条相似文献,搜索用时 9 毫秒
1.
Sites of phospholipid biosynthesis during induction of intracytoplasmic membrane formation in Rhodopseudomonas sphaeroides 总被引:4,自引:0,他引:4
Cynthia W. Radcliffe Richard M. Broglie Robert A. Niederman 《Archives of microbiology》1985,142(2):136-140
A rapid, gratuitous and cell-division uncoupled induction of intracytoplasmic photosynthetic membrane formation was demonstrated in low-aeration suspensions of chemotrophically grown Rhodopseudomonas sphaeroides. Despite a nearly 2-fold increase in phospholipid levels, no significant increases were detected in the specific activities of CDP-1,2-diacyl-sn-glycerol:sn-glycerol-3-phosphate phosphatidyltransferase (phosphatidylglycerophosphate synthase, EC 2.7.8.5) and CDP-1,2-diacyl-sn-glycerol:L-serine O-phosphatidyltransferase (phosphatidylserine synthase, EC 2.7.8.8), the first committed enzymes of anionic and zwitterionic phospholipid biosyntheses, respectively. The distribution of phosphatidylglycerophosphate and phosphatidylserine synthase activities after rate-zone sedimentation of cell-free extracts indicated that intracytoplasmic membrane phospholipids were synthesized mainly within distinct domains of the conserved cytoplasmic membrane. Labeling studies with 32Pi and L-[3H]phenylalanine suggested that preexisting phospholipid was utilized initially as the matrix for insertion of intracytoplasmic membrane protein that was synthesized and assembled de novo during induction.Abbreviations BChl
bacteriochlorophyll a
- B800-850, B875
peripheral and core light-harvesting BChl-protein complexes, respectively, identified by near-IR absorption maxima
This paper is dedicated to Professor Gerhart Drews on the occasion of his sixtieth birthday 相似文献
2.
Proton translocation during the reduction of NO
3
-
, NO
2
-
, N2O and O2, with endogenous substrates, in washed cells of Rhodopseudomonas sphaeroides f. denitrificans was investigated by an oxidant pulse method. On adding NO
2
-
to washed cells, anaerobically in the dark, an alkalinization occurred in the reaction mixture followed by acidification. When NO
3
-
, N2O or O2 was added to cells in the dark or with these compounds and NO
2
-
in light an acidification only was observed. Proton translocation was inhibited by carbonyl cyanide-m-chlorophenyl hydrazone.Valinomycin treated cells produced acid in response to the addition of either NO
3
-
, NO
2
-
, N2O or O2. The proton extrusion stoichiometry (
ratios) in illuminated cells were as follows: NO
3
-
0.5N2, 4.82; NO
2
-
0.5N2, 5.43; N2ON2, 6.20; and O2H2O, 6.43. In the dark the comparable values were 3.99, 4.10, 4.17 and 3.95. Thus, illuminated cells produced higher
values than those in the dark, indicating a close link between photosynthesis and denitrification in the generation of proton gradients across the bacterial cell membranes.When reduced benzyl viologen was the electron donor in the presence of 1 mM N-ethylmaleimide and 0.5 mM 2-n-heptyl-4-hydroxyquinoline-N-oxide in the dark, the addition of either NO
3
-
, NO
2
-
or N2O to washed cells resulted in a rapid alkalinization of the reaction mixture. The stoichiometries for proton consumption,
ratios without a permeant ion were NO
3
-
NO
2
-
,-1.95; NO
2
-
0.5 N2O,-3.03 and N2ON2,-2.02. The data indicate that these reductions occur on the periplasmic side of the cytoplasmic membrane.Abbreviations BVH
reduced benzyl viologen
- CCCP
carbonyl cyanide m-chlorophenyl hydrazone
- DIECA
N, N-diethyl-dithiocarbamate
- HOQNO
2-n-heptyl-4-hydroxyquinoline-N-oxide
- NEM
N-ethylmaleimide 相似文献
3.
Two kinds of mutants of Rhodopseudomonas sphaeroides that should be useful in extending genetic analysis of this organism have been isolated. One is deficient in recombination and has been used to isolate derivatives of the plasmid R 68.45 which incorporate chromosomal genes of R. sphaeroides. The other is apparently defective in a DNA restriction enzyme; transfer of plasmid borne chromosomal genes of R. sphaeroides from Escherichia coli back to R. sphaeroides is greatly enhanced in these mutants.In memory of R. Y. Stanier 相似文献
4.
Rhodopseudomonas sphaeroides f. denitrificans grown photosynthetically with NO
3
-
under anaerobic conditions accumulated NO
2
-
in the culture medium. In washed cells succinate, lactate, fumarate, citrate and malate, were effective electron donors for the reduction of NO
3
-
, NO
2
-
and N2O to N2 gas. Nitrate reductase was inhibited by amytal and potassium thocyanate. Nitrite reductase activity was severely restricted by potassium cyanide, sodium diethyldithiocarbamate, Amytal and 2-n-heptyl-4-hydroxyquinoline-N-oxide whereas N2O reductase was inhibited by NaN3, C2H2 and KCNS. Cells incubated with either K15NO3 or K15NO2 produced 15N2O and 15N2. A stoichiometry of 2:1 was recorded for the reduction of either NO
3
-
or NO
2
-
to N2O and N2 and for N2O to N2 it was 1:1.Abbreviations BVH
reduced benzyl viologen
- MVH
reduced methyl viologen
- HOQNO
2-n-heptyl-4-hydroxyquinoline-N-oxide
- CCCP
carbonyl cyanide-m-chlorophenyl-hydrazone
- DIECA
diethyl dithiocarbamate
- KCN
potassium cyanide 相似文献
5.
Glutamine synthetase (GS) of Rhodopseudomonas sphaeroides is regulated by adenylylation and deadenylylation. The extent of adenylylation/deadenylylation of the enzyme in cell free extracts was influenced by inorganic phosphate (P
i), -ketoglutarate, ATP and other nucleotides. While P
i and -ketoglutarate stimulated deadenylylation, ATP and other nucleotides enhanced adenylylation of the GS. By using proper combinations of the effectors and incubation conditions, any desired adenylylation state of GS could be adjusted in vitro. The enzyme was purified to electrophoretic homogenity by three steps including affinity chromatography on 5-AMP-Sepharose. Adenylylated and deadenylylated enzyme showed different UV-spectra and isoelectric points. The native enzyme had a molecular weight of 600,000, deadenylylated subunits of 50,000±1,000. Electron microscopic investigations revealed a dodecameric arrangement of subunits in two hexameric planes. 相似文献
6.
We have shown that mature 50S ribosomal subunits of Paracoccus denitrificans lack intact 23S rRNA, containing instead rRNAs of 0.56 (16S) and 0.37 (14S)x106 molecular weight. Kinetic labelling studies showed these to be derived from a 1.02x106 dalton precursor, which may itself derive from a larger and very transient 23S species. A similar pattern of rRNA processing has been previously described for Rhodopseudomonas sphaeroides, and we have compared, by Tl oligonucleotide catalog analysis, the smaller (14S) fragments of P. denitrificans and R. sphaeroides 23S rRNAs. These were shown to exhibit strong sequence homology, and comparisons of 14S-derived oligonucleotides to oligonucleotides from an in vitro-generated 13S fragment of Escherichia coli 23S rRNA suggest that P. denitrificans and R. sphaeroides 14S rRNAs arise from the 5-terminal portions of their respective 23S precursors. Results are considered to be consistent with the claim that P. denitrificans arose, by loss of photophosphorylation, from a member of the Rhodospirillaceae.Abbreviations E buffer
60 ml 2 M Tris base, 20 ml 3 M sodium acetate, 15 ml 0.2M disodium EDTA, 6 ml glacial acetic acid, 900 ml distilled water
- HEPES
N-2-hydroxymethyl piperazine-N-2-ethanesulfonic acid
- TMK
5 mM Tris-Cl, 0.1 mM MgSO4, 60 mM KCl. pH 7.3
- TM3
10 mM Tris-Cl, 1 mM MgCl2, pH 7.3
- Tris
tris (hydroxymethyl) aminomethane
- SDS
sodium dodecyl sulphate 相似文献
7.
Rhodopseudomonas sphaerodes mutant H5 lacking 5-aminolevulinic acid synthase was grown phototrophically in chemostat cultures limited by malate. Tetrapyrrole formation was limited by 5-aminolevulinic acid. With variation of dilution rates the cultures exhibited two regions of almost constant cell protein, dry weight and bacteriochlorophyll levels suggesting the formation of two physiological modifications of the strain. These modifications were further characterized by differences in the rates of 5-aminolevulinic acid consumption, the production of reserve material, the stoichiometries of 5-aminolevulinic acid consumption and bacteriochlorophyll or cytochrome production, specific bacteriochlorophyll and cytochrome contents as well as the ratio of bacteriochlorophyll protein complexes. In contrast, cellular levels of coproporphyrin II stayed almost constant over the entire range of dilution rates employed. Bacteriochlorophyll and b-type cytochrome cellular levels exhibited hyperbolic dependencies on the specific rate of 5-aminolevulinic acid consumption, and c-type cytochrome levels a signmoidal dependency. Bacteriochlorophyll cellular levels showed a biphasic dependency with half maximal saturations at 2.6 and 15.4 nmol of 5-aminolevulinic acid consumed per mg of protein and h, and maximal levels of 15.2 and 21 nmol bacteriochlorophyll per mg of protein. Cellular levels of c- and b-type cytochromes were half maximally saturated at 19.5 and 14.5 nmol 5-aminolevulinic acid consumed per mg protein and h while maximal levels were reached at 0.5 and 0.17 nmol of c- and b-type cytochromes, respectively, per mg of protein.The data suggest that within the cell bacteriochlorophyll as well as c- and b-type cytochrome units are assembled according to a defined pattern of kinetics characteristic of each group of compounds. Under otherwise constant external conditions the expression of the pattern is controlled by the rate of 5-aminolevulinic acid supply. 相似文献
8.
In cells of Rhodopseudomonas sphaeroides f. sp. denitrificans nitrite and nitric oxide, the products of denitrification, inhibit activity of nitrogenase enzyme.Ferredoxin-linked CO2 fixation, with H2 as a reductant, was also inhibited by nitrite and NO in denitrifying cells.EPR spectroscopy of cell preparations treated with NO showed that it reacts with non-haem iron-sulphur proteins to form iron-nitrosyl complexes. Nitrite also reacts with these iron-sulphur proteins, but the formation of ironnitrosyl complexes was dependent on the presence of dithionite. Since nitrite is reduced to NO by dithionite it is likely that nitrogenase and CO2 fixation reactions are inhibited not only by nitrite itself, but also by nitric oxide.Abbreviation DPPH
1,1-diphenyl-2-picrylhydrazyl 相似文献
9.
Rhodospirillum rubrum grown either chemotrophically or phototrophically at 14°C and 30°C, was employed to study the effect of temperature on fatty acid composition as well as on several membrane bound functions involved in energy metabolism. Upon growth at both temperatures the fatty acid composition of membranes showed differences, which could be attributed to an incomplete formation of photosynthetically active membranes rather than specifically to the growth temperature. Activities of NADH dependent respiration and light induced proton extrusion by cells did not show discontinuities in Arrhenius plots down to temperatures of 15°C and 5°C, respectively. In contrast, coupling factor Mg2+- and Ca2+-ATPase as well as succinate cytochrome c oxidoreductase showed significant breaks at 20°C and 18°C, respectively. Similarly, in Rhodopseudomonas sphaeroides. NADH dependent respiration and light induced proton extrusion by cells was continuous over the entire range of temperatures applied. ATPase as well as succinate cytochrome c oxidoreductase, on the other hand, featured discontinuities in Arrhenius plots at 20°C and 19°C. The implication of the data on growth rates and membrane structure are discussed.Abbreviation Bchl
baceteriochlorophyll 相似文献
10.
The influence of temperature on yields of cell protein and bacteriochlorophyll as well as on the rates of growth and bacteriochlorophyll synthesis was studied with Rhodospirillum rubrum and Rhodopseudomonas sphaeroides. Under chemotrophic conditions net cell-protein production increased in cultures of both species along with temperature from 14°C up to the optimum at 33°C. Under phototrophic conditions cell-protein yields were largely constant within the range from 21°C to 33°C. At temperatures below 21°C and above 33°C yields decreased. These results are interpreted in terms of coupling between energy yielding or redox equivalent providing metabolisms and cell biosynthesis. Upon adaptation from chemotrophic to phototrophic conditions a direct relationship between temperature increase and bacteriochlorophyll level was observed. Arrhenius plots of both, specific growth rates and rates of bacteriochlorophyll synthesis, revealed discontinuities at about 20°C. Temperature coefficients either above or below those discontinuities were similar in both species. In R. rubrum temperature coefficients of the synthesis of total bacteriochlorophyll were also representative of the synthesis of photochemical reaction center and light harvesting bacteriochlorophylls. But in R. sphaeroides significant differences were observed between temperature coefficients of the syntheses of bacteriochlorophylls of the costantly composed reaction centerlight harvesting complex on one hand and of both, total and the quantitatively variable light harvesting bacteriochlorophylls on the other. The results are interpreted in light of hypotheses on the regulation (a) of cellular bacteriochlorophyll levels as well as (b) of the ratio of functionally different bacteriochlorophylls in the photosynthetic apparatus.Abbreviation Bchl
bacteriochlorophyll 相似文献
11.
Toshio Satoh 《Archives of microbiology》1984,139(2-3):179-183
The effects of nitric oxide (NO) on electron transfer were studied with a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. NO inhibited the oxidation of cytochrome c induced by continuous illumination in intact cells. NO inhibited the re-reduction of cytochrome c, the slow phase of the carotenoid bandshift, and the oxidation of cytochrome b after a flash illumination, suggesting that NO inhibited the photosynthetic cyclic electron transfer through the cytochrome b-c
1 region. NO also inhibited the nitrite (NO
2
-
) and NO reductions with succinate as the electron donor in intact cells, but did not inhibit the NO
2
-
and NO reductions in chromatophore membranes with ascorbate and phenazine methosulfate as the electron donors. NO reversibly inhibited the ubiquinol: cytochrome c oxidoreductase of the membranes, suggesting that NO inhibited the electron transfer through the cytochrome b-c
1 region and that the cytochrome b-c
1 complex also was involved in the electron transport in both NO
2
-
and NO reductions. The catalytic site of NO reduction was distinct from the inhibitory site of NO.Abbreviations UHDBT
5-undecyl-6-hydroxy-4,7-dioxobenzothiazole
- UHNQ
3-undecyl-2-hydroxy-1,4-naphthoquinone
- MOPS
3-(N-morpholino)propane-sulfonic acid
- PMS
phenazine methosulfate
- DCIP
2,6-dichlorophenol indophenol
- DDC
diethyl-dithiocarbamate 相似文献
12.
Fixation of dissolved dinitrogen in culture solutions by the photosynthetic bacterium Rhodopseudomonas capsulata, strain B10, reduced the lag phase associated with growth with glutamate. A comparable effect was not observed with ammonium chloride. This strain assimilated nitrate but nitrogen fixation was depressed during early growth on nitrate. It is shown that nitrite, the first product of nitrate assimilation, inhibits nitrogen fixation during the early stages of cell growth. 相似文献
13.
Studies on acetate utilization by Rhodopseudomonas capsulata strain St. Louis indicated that the wild type grew poorly on acetate and made little if any of the glyoxylate cycle enzyme isocitrate lyase. A spontaneous mutant, Ac-l, capable of vigorous and immediate growth on acetate and exhibiting high levels of isocitrate lyase activity, was isolated in the course of those studies.Isocitrate lyase was not formed when the mutant was grown on malate. Addition of malate to cultures of Ac-l growing on acetate resulted in loss of the enzyme by dilution through growth.Starvation of acetate-grown Ac-l for acetate resulted in a rapid and complete loss of isocitrate lyase activity which was shown to be energy dependent. Readdition of acetate to a starved culture previously grown on acetate resulted in a rapid recovery of enzyme activity. The recovery required energy and was sensitive to chloramphenicol inhibition at any time during the recovery phase. 相似文献
14.
K. J. Visscher H. Bergström V. Sundström C. N. Hunter R. Van Grondelle 《Photosynthesis research》1989,22(3):211-217
Decay of the bacteriochlorophyll excited state was measured in membranes of the purple bacteria Rhodospirillum (R.) rubrum, Rhodobacter (Rb.) sphaeroides wild type and Rb. sphaeroides mutant M21 using low intensity picosecond absorption spectroscopy. The excitation and probing pulses were chosen in the far red wing of the long wavelength absorption band, such that predominantly the minor antenna species B896 was excited. The decay of B896 was studied between 77 and 177K under conditions that the traps were active. In all species the B896 excited state decay is almost temperature independent between 100 and 177K, and probably between 100 and 300 K. In this temperature range the decay rates for the various species are very similar and close to 40 ps. Below 100 K this rate remains temperature independent in Rb. sphaeroides w. t. and M21, while in R. rubrum a steep decrease sets in. An analysis of this data with the theory of nuclear tunneling indicates an activation energy for the final transfer step from B896 to the special pair of 70cm-1 for R. rubrum and 30cm-1 or less for Rb. sphaeroides.Abbreviations B880 and B896
the main and long wavelength bacteriochlorophyll's of the LH-1 antenna
- RC
reaction centre
- P
special pair in the RC 相似文献
15.
Summary. As the outermost boundary of the cell, the plasma membrane plays an important role in determining the stress resistance of
organisms. To test this concept in a cryophyte, we analyzed alterations of several components in plasma membranes isolated
from suspension-cultured cells of Chorispora bungeana Fisch. & C.A. Mey in response to treatment at 0 and −4 °C for 192 h. When compared with the controls growing at 25 °C, both
the membrane permeability and fluidity showed recovery after the initial impairment. Linolenic acid and membrane lipid unsaturation
increased by about 0.8-fold following cold treatments, although the kinetics of the increase varied with the temperatures
examined. During the treatments, the plasma membrane H+-ATPase (EC 3.6.1.3) activity increased by 78.06% at 0 °C and 100.47% at −4 °C. However, the plasma membrane NADH oxidase
(EC 1.6.99.3) activity only decreased when exposed to a lower temperature (−4 °C), and remained at 63.93% after being treated
for 192 h. After the treatments, the physical properties of the plasma membranes of suspension-cultured cells, especially
the −4 °C treated cells, were similar to those in the wild plants. These findings indicate that the specific mechanism of
cold resistance of C. bungeana is tightly linked with the rapid and flexible regulation of membrane lipids and membrane-associated enzymes, which ensure
the structural and functional integrity of the plasma membrane that is essential for withstanding low temperature.
Correspondence: Lizhe An, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,
Lanzhou 730000, People’s Republic of China. 相似文献
16.
The homoacetogenic bacteria Sporomusa ovata and Sporomusa sphaeroides were grown on betaine, betaine + formate, and acetoin in the absence of carbon dioxide, and the formation of membrane-bound cytochromes was determined. In S. sphaeroides, the growth substrate had little influence on the expression of cytochromes. In contrast, membranes from betaine-or acetoin-grown S. ovata cells had an 11-or 3-fold higher cytochrome b content than cells grown on betaine + formate. The cytochrome c content was reduced below the detection level after growth on the latter two substrates. The cytochromes in the membranes of S. sphaeroides and S. ovata were characterized by low-temperature difference spectroscopy, hemochrome difference spectroscopy, and redox potentiometry. Membranes of S. ovata were shown to contain two b-type cytochromes with Em,7=-153±10 mV and Em,7=-226±14 mV and two c-type cytochromes with Em,7=-86±6 mV and Em,7=-265±10 mV. In S. sphaeroides also two b-type cytochromes with Em,7=-165±7 mV and Em,7=-241±2 mV and two c-type cytochromes with Em,7=-101±4 mV and Em, 8.5=-338±9 mV could be distinguished. Cell extracts of S. sphaeroides were shown to contain all the enzymes of the acetyl-CoA (Wood) pathway. The degradation pathways of the substrates tested and the possible role of the cytochromes are discussed.Abbreviations Em,7
midpoint potential at pH 7 and 25°C
- H4F
tetrahydrofolate 相似文献
17.
Three Solanum genotypes with various polygenic resistance levels to the oomycete pathogen Phytophthora infestans (Mont.) De Bary were studied for their antioxidant response to the pathogen culture filtrate (CF). Detached plant leaves were treated with CF for 6, 18 and 30 h, and assayed for changes in hydrogen peroxide content, total ascorbate and glutathione pools and redox ratios (reduced form to total pool), as well as for changes in activities of ascorbate peroxidase, glutathione reductase and glutathione-S-transferase. In CF treated leaves of non-host resistant S. nigrum var. gigantea and field resistant S. tuberosum cv Bzura, the H(2)O(2) content did not change in comparison to water treated control leaves, whereas in the susceptible S. tuberosum clone H-8105 it decreased below the control level. In CF treated leaves of all genotypes, the total ascorbate pools were relatively unaltered and their redox ratio changed only transiently. In Bzura leaves the total glutathione content increased earlier than in the two other genotypes. The glutathione redox ratio remained rather stable, except for the susceptible clone H-8105, where it decreased transiently by about 42%. The relative increases in activity of all the studied enzymes were the highest in the susceptible clone H-8105. The results are discussed in the light of oxidative processes occurring in CF treated leaves. We conclude that stringent control of pro- and anti-oxidant reactions bringing the H(2)O(2) and/or cellular redox state to the threshold level is decisive for deployment of an effective defense strategy. 相似文献
18.
The effect of mycorrhizal inoculation on 15N transfer from soybean to maize was studied in fumigated and non-fumigated soil. Three Glomus species and a non-inoculated control were compared.In spite of higher levels of root colonization and more abundant hyphae associated with plants growing in fumigated soil, mycorrhizae-enhanced 15N transfer to maize was significant only in non-fumigated plots. High 15N transfer was not only associated with high mycelium density in soil but also with low soil microbial carbon, suggesting that the effect of mycorrhizal fungi on soil microbial populations may be an important factor affecting N transfer between mycorrhizal plants. 相似文献
19.
The role of the plasma membrane (PM) H+-ATPase (E.C. 3.6.1.3) in the plants response to salt stress was studied in the perennial leguminosae forage Medicago arborea L. and its close relative Medicago citrina (Font-Quer) Greuter, a species exposed to saline conditions in its original habitat. Plants were solution cultured for 8 days in 1 or 100 mM NaCl. Leaf growth and CO2 assimilation were more inhibited by salt in M. arborea than in M. citrina. Both species were able to osmoregulate, and salt-treated plants maintained turgor potentials, with no differences between species. Contrasting ion distribution patterns showed that M. citrina was able to exclude Na+ from the leaves more selectively, while M. arborea had a greater buildup of leaf blade Na+. Isolation of purified PM and quantification of H+-ATPase protein by Western blot analysis against the 46E5B11D5 or AHA3 antibodies showed an increase in response to salt stress in the expanding (92%) and expanded leaves (87%) of M. citrina, while no differences were found in the corresponding leaves of M. arborea. The assay of H+-ATPase specific activity of the two leaf types in salinized M. citrina confirmed this increase, as activities increased with 55% and 104% for the expanded and expanding leaves, respectively, while no significant differences were found for either leaf type of salinized M. arborea. A possible role of the increased expression of the PM H+-ATPase for leaf expansion and ion exclusion in salt-stressed plants is discussed. 相似文献
20.
Plant dormancy and dormancy breaking depend, at least partially, on close relationships between buds and tissues underlying bud (bud stands). In Prunus persica, the dormancy was related to high nutrient absorption in bud stands linked to high plasmalemma ATPase (EC 3.6.1.3) activity. Two plasmalemma fractions was isolated from peach vegetative buds and bud stands using aqueous phase partitioning and ultracentrifugation. Results of markers enzyme assays indicated that both plasmalemma enriched fractions obtained were highly purified. During the dormancy period plasma membrane ATPase amount and activity were higher in bud stands than in buds. Moreover, assays performed at different temperatures (4, 18, 30 °C) indicated modifications of kinetic parameters (Km, Vm) in both tissues during dormancy release. In buds, from November to February, Km declined at 4°C and increased at 30 °C whereas no changes was measured at 18 °C and Vm increased at all temperature. In bud stands, no changes of Km was measured at 4 °C and 18 °C whereas an increase occurred at 30 °C and Vm decreased at all temperature. According to the results, it can be postulated that dormancy release in peach-tree could be related to modifications of plasma membrane ATPase properties, in buds and bud stands, during winter time. 相似文献