首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this study, we report a procedure for producing antisera that block the binding of 125I-insulin to its receptor. After 2 injections with intact IM-9 cultured human lymphocytes, the antisera from 8 of 17 BalbC mice inhibited the binding of 125I-insulin to its receptor on IM-9 cells by 50% or greater. One antiserum at dilutions of 1:200 and 1:50 inhibited the binding of 125I-insulin by 50% and 80%, respectively. Four lines of evidence indicated that the inhibition of 125I-insulin binding by this antiserum was due to a specific immunoglobulin directed against the insulin receptor. First, removal of the immunoglobulin fraction of the antiserum resulted in a complete loss of its inhibitory activity. Second, the antiserum inhibited the binding of 125I-insulin to its receptor on both human cultured lymphocytes and human placenta particles. Third, the antisera bound solubilized insulin-receptor complexes. Finally, the antiserum did not inhibit the binding of 125I-human growth hormone to its receptor on IM-9 lymphocytes. These studies demonstrate therefore, a simple method for producing antibodies that block the binding of 125I-insulin to the human insulin receptor.  相似文献   

2.
Summary The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane.125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time-and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane assoicated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of125I-insulin by BBV, but these processes were not appreciably afected by the insulin-like growth factors IGF-I and IGF-II or by cytochromec and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of125I-insulin with BBV was studied at various medium osmolarities (300–1100 mosm) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10–5 m. These results indicate the presence of low-affinity, high-capacity binding sites for125I-insulin on renal brush border membranes which can clearly distinguish insulin from the insulin-like growth factors and other low molecular weight proteins and polypeptides, but which do not differentiate insulin from its analogues ad do the biological receptors for the hormone. The properties and location of these binding sites make them attractive candidates for the sites at which insulin is reabsorbed in the renal tubule.  相似文献   

3.
Isolated rat hepatocytes were used to investigate the relationship between the effect of insulin on amino acid transport and hormone internalization. As previously observed with fibroblastic cells, 10 mM methylamine inhibited the clustering and internalization of the hormone-receptor complex in hepatocytes. Direct measurement of 125I-insulin binding indicated that methylamine did not decrease the binding capacity of the cells. When used at concentrations that did not affect the basal rate of α-aminoisobutyric acid transport, methylamine did not cause a specific decrease in the stimulation by insulin. The data indicate that the internalization of insulin is not required for the expression of its biological effect on amino acid transport.  相似文献   

4.
Insulin was tritiated by exposure to tritium gas activated by microwave radiation. 3H-insulin competed with 125I-insulin for binding to cultured human lymphocytes and to anti-insulin antibody to the same extent as did native insulin. The affinity constant for the binding of 3H-insulin to specific receptors on cultured human lymphocytes was 0.48 × 109 M?1 (SD-0.06). The affinity constant for the binding of 125I-insulin was 0.57 × 109 M?1 (SD=0.23). As was the case with 125I-insulin, the Scatchard plot of the binding of 3H-insulin to human lymphocytes was curvilinear, suggesting the presence of a heterogeneous population of receptors, or of a homogeneous population of receptors that exhibit negative cooperativity. The similarity observed between 3H-insulin and 125I-insulin helps refute the argument that distortion of the insulin molecule caused by introduction of an iodine atom may interfere with its binding to insulin receptors.  相似文献   

5.
The present study demonstrated that at physiological concentrations of insulin bacitracin inhibited the degradation of specifically bound insulin by enzymes located in the rat adipocyte plasma membrane. Bacitracin increased the amount of intact insulin specifically bound to the plasma membrane and potentiated the stimulation of adipocyte glucose oxidation by submaximal concentrations of the hormone. In contrast to agents such as chloroquine, which inhibit lysosomal degradation of internalized insulin, bacitracin was shown by two approaches to inhibit a degradative process localized to the adipocyte plasma membrane. Cyanide and 2,4-dinitrophenol, agents which inhibit energy requiring endocytosis, had no effect on the bacitracin inhibition of cellular degradation of 125I-insulin. Bacitracin directly inhibited 125I-insulin degradation by isolated plasma membranes at similar concentrations and to a similar extent as found with cells. The degradative process inhibited by bacitracin accounted for the majority of cellular degradation of the hormone. The increased 125I-insulin bound to adipocytes was shown to be intact by gel chromatographic analysis and was localized to the plasma membrane by direct and indirect approaches. Bacitracin increased 125I-insulin specifically bound to isolated plasma membranes as early as 2 min. The 125I-insulin bound to adipocytes in the presence of bacitracin was completely dissociable by the addition of 8 microM unlabeled insulin whereas a significant portion of 125I-insulin bound to chloroquine-treated cells could not be dissociated. Bacitracin slowed dissociation of 125I-insulin from the cells. Bacitracin increased the 125I-insulin binding to cells in the presence and absence of cyanide and 2,4-dinitrophenol. Bacitracin potentiated the stimulation of adipocyte glucose oxidation at submaximal concentrations of insulin.  相似文献   

6.
Endothelial cells were cultured from bovine fat capillaries, aortae and pulmonary arteries and their interactions with 125I-IGF-I, 125I-MSA (an IGF-II), 125I-insulin and the corresponding unlabeled hormones were evaluated. Each endothelial culture showed similar binding parameters. With 125I-insulin, unlabeled insulin competed with high affinity while IGF-I and MSA were approximately 1% as potent. With 125I-MSA, MSA was greater than or equal to IGF-I in potency and insulin did not compete for binding. Using 125I-IGF-I, IGF-I was greater than or equal to MSA whereas insulin decreased 125I-IGF-I binding by up to 72%. Exposing cells to anti-insulin receptor antibodies inhibited 125I-insulin binding by greater than 90%, did not change 125I-MSA binding, while 125I-IGF-I binding was decreased by 30-44%, suggesting overlapping antigenic determinants between IGF-I and insulin receptors that were not present on MSA receptors. We conclude that cultured capillary and large vessel endothelial cells have distinct receptors for insulin, IGF-I and MSA (IGF-II).  相似文献   

7.
The influence of a mild heat shock on the fate of the insulin-receptor complex was studied in cultured fetal rat hepatocytes whose insulin glycogenic response is sensitive to heat [Zachayus and Plas (1995): J Cell Physiol 162:330–340]. After exposure from 15 min to 2 hr at 42.5°C, the amount of 125I-insulin associated with cells at 37°C was progressively decreased (by 35% after 1 hr), while the release of 125I-insulin degradation products into the medium was also inhibited (by 75%), more than expected from the decrease in insulin binding. Heat shock did not affect the insulin-induced internalization of cell surface insulin receptors but progressively suppressed the recycling at 37°C of receptors previously internalized at 42.5°C in the presence of insulin. When compared to the inhibitory effects of chloroquine on insulin degradation and insulin receptor recycling, which were immediate (within 15 min), those of heat shock developed within 1 hr of heating. The protein level of insulin receptors was not modified after heat shock and during recovery at 37°C, while that of Hsp72/73 exhibited a transitory accumulation inversely correlated with variations in insulin binding, as assayed by Western immunoblotting from whole cell extracts. Coimmunoprecipitation experiments revealed a heat shock-stimulated association of Hsp72/73 with the insulin receptor. Affinity labeling showed an interaction between 125I-insulin and Hsp72/73 in control cells, which was inhibited by heat shock. These results suggest that increased Hsp72/73 synthesis interfered with insulin degradation and prevented the recycling of the insulin receptor and its further thermal damage via a possible chaperone-like action in fetal hepatocytes submitted to heat stress. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Insulin and IGF-I receptors were solubilized from fused L-6 myocytes, a rat skeletal muscle derived cell line, and compared to rat skeletal muscle receptors. In skeletal muscle, 125I-insulin binding was competed by insulin greater than IGF-I greater than MSA, whereas in L-6 cells IGF-I greater than insulin greater than MSA. 125I-IGF-I binding was competed by IGF-I greater than insulin = MSA in both tissues. On electrophoresis, differences in Mr were observed between skeletal muscle and L-6 derived receptors both in the alpha- and beta-subunits. Six antibodies directed against the human insulin receptor beta-subunit recognized the rat skeletal muscle insulin receptor, while only two reacted strongly with L-6 derived receptors. Skeletal muscle has receptors with relative specificity for insulin and IGF-I respectively; L-6 cells also have two classes of receptors, one is kinetically similar to the IGF-I receptor from skeletal muscle; the other, which binds insulin with relatively high affinity has even greater affinity for IGF-I. This unusual receptor may represent a developmental stage in muscle or the transformed nature of L-6 cells.  相似文献   

9.
Treatment of primary cultured adipocytes with 20 mM glucose resulted in a progressive increase in specific 125I-insulin binding that began almost immediately (no lag period) and culminated in a 60% increase by 24 h. This effect was dose-dependent (glucose ED50 of 4.6 mM) and mediated by an increase in insulin receptor affinity. Moreover, it appears that glucose modulates insulin receptor affinity through de novo protein synthesis rather than through covalent modification of receptors, since cycloheximide selectively inhibited the glucose-induced increase in insulin binding capacity (ED50 of 360 ng/ml) and restored receptor affinity to control values. Importantly, insulin sensitivity of the glucose transport system was increased by glucose treatment (63%) to an extent comparable with the enhancement in receptor affinity, thus indicating a functional coupling between insulin binding and insulin action. When the long term effects of insulin were assessed (24 h), we found that insulin treatment reduced 125I-insulin binding by greater than 60% by down-regulating the number of cell surface receptors in a dose-dependent manner (insulin ED50 of 7.4 ng/ml). On the basis of these studies, we conclude that 1) insulin binding is subject to dual regulation (glucose controls insulin action by enhancing receptor affinity, whereas insulin controls the number of cell surface receptors); and 2) glucose appears to modulate insulin receptor affinity through the rapid biosynthesis of an affinity regulatory protein.  相似文献   

10.
Monoclonal antibodies previously shown to react with five distinct epitopes on the human insulin receptor were tested for their metabolic effects on isolated human adipocytes. Two antibodies which reacted with receptor alpha-subunit and completely inhibited 125I-insulin binding mimicked the actions of insulin to stimulate lipogenesis from [14C]glucose and to inhibit catecholamine-induced lipolysis. On a molar basis, these antibodies were comparable in potency with insulin itself. Two other antibodies which decreased insulin binding only slightly or not at all also mimicked these metabolic effects of insulin. One of these antibodies reacted with receptor beta-subunit. In contrast, a further antibody which reacted with alpha-subunit and inhibited insulin binding did not affect basal lipogenesis or catecholamine-induced lipolysis, but was able to antagonize the effects of insulin on these processes. The same antibody antagonized the insulin-like effect of another antibody with which it competed in binding to insulin receptor, but not the effect of an antibody which bound independently to the receptor. It is concluded that binding of ligand at or close to the insulin-binding site is neither necessary nor sufficient to trigger insulin-like metabolic effects, which may rather depend on some general property of antibodies, such as their ability to cross-link and aggregate receptor molecules.  相似文献   

11.
Studies were carried out on cultures of human skin fibroblasts to explore the effects of culture medium glucose levels on insulin binding and action. Cell cultures in 5.55 mm glucose-containing medium depleted their medium glucose within 3 days, and at that time exhibited elevated deoxy-d-glucose (2-DG) transport (84% greater than control cultures fed 22.2 mm glucose) and failure of insulin to stimulate 2-DG transport (an insulin:control transport ratio of 1.02). There was also a significant negative correlation between basal 2-DG transport and insulin binding (r = ?0.621; n = 29; P < 0.01), while insulin binding exhibited a significant positive correlation with insulin action (r = 0.816; n = 12; P < 0.01). Glucose starvation of cultures for 18 h resulted in several changes: (i) a 49% decrease in specific 125I-insulin binding due to a reduction in binding capacity; (ii) elevated basal 2-DG transport; and (iii) an absence of insulin stimulation of 2-DG transport. Exposure to increasing concentrations of glucose for 18 h led to a glucose concentration-dependent increase in specific insulin binding. Additionally, the various changes in the glucose-starved group were reversed after as little as 6 h of glucose refeeding. The results indicate that basal sugar transport, and insulin binding and action can be regulated by the amount of glucose in the medium.  相似文献   

12.
Monoclonal antibodies for the human insulin receptor were produced following immunization of mice with IM-9 lymphocytes and/or purified placental receptor. Four separate fusions yielded 28 antibodies, all of which reacted with receptor from human placenta, liver and IM-9 cells. Some antibodies cross-reacted to varying degrees with receptor from rabbit, cow, pig and sheep, but none reacted with rat receptor. At least 10 distinct epitopes were recognized as indicated by species specificity and binding competition experiments. All of these epitopes appeared to be on extracellular domains of the receptor as shown by binding of antibodies to intact cells. In some cases the epitopes were further localized to alpha or beta subunits by immunoblotting. Several antibodies inhibited binding of 125I-insulin to the receptor, some had no effect on binding, and others enhanced the binding of 125I-insulin. It is concluded that these antibodies will be valuable probes of receptor structure and function.  相似文献   

13.
In recent years, many studies have suggested a direct role for alpha 2-macroglobulin (alpha 2M), a plasma proteinase inhibitor, in growth factor regulation. When coincubated in the presence of either trypsin, pancreatic elastase, human neutrophil elastase, or plasmin, 125I-insulin rapidly formed a complex with alpha 2M which was greater than 80% covalent. The covalent binding was stable to reduction but abolished by competition with beta-aminopropionitrile. Neither native alpha 2M nor alpha 2M pretreated with proteinase or methylamine incorporated 125I-insulin. Experiments utilizing alpha 2M cross-linked with cis-dichlorodiammineplatinum(II) indicated that 125I-insulin must be present during alpha 2M conformational change to covalently bind. A maximum stoichiometry of 4 mol of insulin bound per mole of alpha 2M and the short half-life of the alpha 2M intermediate capable of covalent incorporation were consistent with thiol ester involvement. Protein sequence analysis of unlabeled insulin-alpha 2M complexes, together with results of beta-aminopropionitrile competition, confirmed that insulin incorporation occurs via the same gamma-glutamyl amide linkage responsible for covalent proteinase and methylamine binding to alpha 2M. Although intact insulin apparently incorporated through its sole lysine residue on the B chain, we found that isolated A chain also bound covalently to alpha 2M. Phenyl isothiocyanate derivatization of the N-terminus had no effect on A-chain binding, supporting the possibility of heretofore unreported gamma-glutamyl ester linkages to alpha 2M.  相似文献   

14.
Mutations in the insulin receptor gene can cause insulin resistance. Previously, we have identified a mutation substituting glutamic acid for lysine at position 460 in the alpha-subunit of the insulin receptor in a patient with a genetic form of insulin resistance. In the present work, we have investigated the effect upon receptor function of amino acid substitutions at position 460. Decreasing the pH from 8.0 to 5.5 caused a progressive acceleration of the dissociation of 125I-insulin from the wild-type insulin receptor. Substitution of acidic amino acids (Glu or Asp) for Lys460 decreased the ability of acid pH to accelerate dissociation of 125I-insulin. In contrast, substitution of Arg or neutral amino acids (Val, Met, Thr, or Gln) had no effect upon the sensitivity to acid pH. Correlated with decreased sensitivity to acid pH, substitution of Glu or Asp at position 460 retarded the dissociation of 125I-insulin from intracellular receptors subsequent to receptor-mediated endocytosis. Furthermore, retardation of dissociation of 125I-insulin from the internalized receptor was associated with a decreased half-life of the receptor. In summary, the Glu460 mutation appears to cause insulin resistance by accelerating receptor degradation and, thereby, decreasing the number of insulin receptors on the cell surface. Additional studies suggested that Lys460 may provide the amino groups whereby disuccinimidyl suberate cross-links the two alpha-subunits to each other. Consistent with the hypothesis that Lys460 is located at the interface between adjacent alpha-subunits, substitutions at position 460 impair cooperative interactions among insulin binding sites. The Glu460 mutation decreases positively cooperative binding interactions; the Arg460 mutation impairs negative cooperativity. Mutations at position 460 in the alpha-subunit did not decrease the ability of insulin to stimulate receptor tyrosine kinase.  相似文献   

15.
125I-insulin binding to rat erythrocytes was studied to investigate the effect of whole body hyperthermia on the insulin receptor. Heat treatment of rats at 42 degrees C for 15 min caused a significant decrease (48.7% of control) in 125I-insulin binding to rat erythrocytes. Scatchard analysis showed that the decreased binding resulted from a decrease in the number of the insulin receptors rather than from a decrease in receptor affinity. The decreased receptor number for insulin showed no evidence of recovery, 2 h and 8 h after the hyperthermia. Plasma insulin levels remained lower than the control, up to 8 h after the hyperthermia, whereas plasma glucose, which decreased immediately after the hyperthermia, increased higher than the control, 8 h after the hyperthermia. The low plasma insulin level and decreased number of insulin receptor are believed to be possible factors for the elevation of plasma glucose.  相似文献   

16.
The pattern of cellular protein glycosylation can be altered in CHO cells by glucose starvation. When wild type CHO cells are deprived of glucose, 125I-insulin binding increases from a B/F of 0.033 +/- 0.004 to 0.063 +/- 0.011, due to an increase in receptor affinity. The already elevated insulin binding to mutant B4-2-1 CHO cells, whose genetic defect causes abnormal glycosylation mimicking the pattern seen in the glucose starved normal cells, is not affected by glucose starvation. In neither cell line is 125I-IGF-I binding affected by glucose starvation. These data support the hypothesis that abnormal glycosylation can alter insulin binding to its receptor. Furthermore, there is a striking difference in the susceptibility of IGF-I and insulin receptors to alterations in glycosylation.  相似文献   

17.
Summary We have examined some of the chemical and biological characteristics of the insulin-derived cell-associated radioactivity following incubation of isolated adipocytes with 125I-insulin (10–10 M) for one hour at 37 °C S ephadex G-50 chromatography of the cell-associated radioactivity demonstrated three peaks: peak I eluted with the void volume and consisted of large molecular weight material; peak II comigrated with 1251-insulin; and peak III consisted of small molecular weight degradation products (probably iodotyrosine). When the insulin peak (peak II) was divided into fourths, it was found that the binding and biologic activity of this material was not homogenous; thus, binding and biologic activity (relative to native insulin) fell markedly from the earliest to the latest eluting fractions of this peak. Furthermore, when the entire peak 11 material was applied to DEAE-Sephacel and eluted with a 0.01–0.2 M NaCl gradient, three distinct peaks were observed. These peaks were all 90% TCA precipitable, whereas the ability of the latter two eluting peaks to precipitate with anti-insulin antiserum was markedly reduced. When similar experiments were performed with chloroquine-treated cells, a large increase in cell-associated radioactivity was observed, and Sephadex G-50 chromatography demonstrated that this increase was entirely confined to peaks I and II. When the insulin peak (peak II) was divided into fourths, it was found that chloroquine markedly inhibited the decreased binding and biologic activity, from the earliest to the latest eluting fraction of this peak. Furthermore, when the peak II material (Sephadex G-50) from chloroquine-treated cells was chromatographed on DEAE-Sephacel, this material eluted in a single peak which was 95% TCA precipitable and 106% precipitable by anti-insulin antiserum. In conclusion, these studies demonstrate that: 1) intermediate insulin-derived products with reduced binding and biologic activity are generated in the process of cellular insulin degradation, and 2) the formation of these intermediate products is mediated by a chloroquine-sensitive pathway.  相似文献   

18.
Insulin receptors could be demonstrated in cultured smooth muscle cells of rat aorta. The specific binding of 125I-insulin was time-, temperature- and pH-dependent. The optimal temperature for our studies was 12 degrees C. At this temperature maximal specific binding was 0.5% of total counts at 120 min incubation. The pH-optimum for the binding process was between 7.5 and 8. Degradation of 125I-insulin at 12 degrees C was 14%, no degradation of binding sites could be measured at this temperature. Dissociation of 125I-insulin was rapid. 50% of the labeled hormone remained associated with the cells. Half-maximal inhibition of 125I-insulin binding was produced by insulin at 4 X 10(-11) mol/l. Scatchard-analysis gave curvilinear plots, that may suggest negative cooperativity. Specificity of binding was studied in competition experiments between 125I-insulin, insulin, proinsulin, insulin-like growth factors and human growth hormone. Half-maximal inhibition of 125I-insulin binding was produced by proinsulin at 2 X 10(-9) mol/l and by insulin-like growth factors at 9 X 10(-9) mol/l. Human growth hormone had no significant effect on the insulin binding.  相似文献   

19.
Treatment of lymphoblastoid cells with interferon decreases insulin binding   总被引:1,自引:0,他引:1  
Lymphoblastoid Daudi cells, which are highly sensitive to growth inhibition by interferon (IFN), can be grown in a defined serum-free medium containing insulin, transferrin, and albumin as the only proteins. We examined whether the growth inhibition by IFN could be in part due to a change in receptors for insulin or transferrin. Cells treated for at least 2 days with 100 units/ml of IFN-alpha 2 bound less 125I-insulin and after 3 days of treatment this binding was reduced by more than 50%. No change in the binding of 125I-transferrin was observed. Treatment with IFN of Raji cells, which are resistant to growth inhibition by IFN, resulted in a similar decrease in 125I-insulin binding. Growth inhibition of Daudi cells by serum deprivation had no effect on 125I-insulin binding. Therefore, the IFN-induced loss of insulin binding sites is not a consequence of growth inhibition.  相似文献   

20.
Insulin-receptor interaction in partially purified preparations of human placental plasma membranes from normal mothers at term of pregnancy has been characterized. 125I-insulin became rapidly and reversibly bound to plasma membranes, being time and temperature dependent. The binding readily appeared at 1.0 ng/ml insulin concentration which falls within the physiological range of peripheral blood. Low levels of unlabeled insulin inhibited binding; 20 ng/ml insulin produced fifty per cent inhibition. Scatchard plots of data from competitive insulin binding proved to be curvilinear. The insulin greater ability for binding observed in this preparation can be explained by the purification degree achieved at the plasma membranes. 125I-insulin was less degraded by partially purified placental plasma membranes than by a microsomal-membrane preparation obtained without differential centrifugation in sucrose linear gradient. All these properties strongly suggest that the insulin-binding sites characterized in the plasma membrane fraction of the placenta represent biologically important receptors to hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号