首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Trehalase in conidia of Aspergillus oryzae   总被引:6,自引:2,他引:4  
Horikoshi, Koki (The Institute of Physical and Chemical Research, Bunkyo-ku, Tokyo, Japan), and Yonosuke Ikeda. Trehalase in conidia of Aspergillus oryzae. J. Bacteriol. 91:1883-1887. 1966.-Trehalases (soluble trehalase and coat-bound trehalase) were found in the conidia of Aspergillus oryzae, and the total activity of the trehalases increased during the germination process. The soluble trehalase was purified by diethylaminoethyl-cellulose column chromatography; its optimal pH, Michaelis constant, and heat stability were studied. In vitro, the trehalases were competitively inhibited by d-mannitol, which was also contained in the conidia. Since the trehalose content in the conidia decreased at an early stage of germination, it was assumed that trehalase might begin to hydrolyze trehalose after the inhibitory effect of d-mannitol decreased.  相似文献   

4.
Ultrastructure of dormant and germinating conidia of Aspergillus nidulans   总被引:2,自引:0,他引:2  
  相似文献   

5.
A study of Taka-amylase A of conidia from Aspergillus oryzae RIB40 was done. During the research, proteins from conidia and germinated conidia were analyzed using SDS-PAGE, 2-D gel electrophoresis, Western blot analysis, MALDI-TOF Mass spectrometry, and native-PAGE combined with activity staining of TAA. The results showed that TAA exists not only in germinated conidia but also in conidia. Some bands representing degraded products of TAA were detected. Conidia, which formed on starch (SCYA), glucose (DCYA), and glycerol (GCYA) plates, contained mature TAA. Only one active band of TAA was detected after native-PAGE activity staining. In addition, TAA activity was detected in cell extracts of conidia using 0.5 M acetate buffer, pH 5.2, as extraction buffer, but was not detected in whole conidia or cell debris. The results indicate that TAA exists in conidia in active form even when starch, glucose, or glycerol is used as carbon source. TAA might belong to a set of basal proteins inside conidia, which helps in imbibition and germination of conidia.  相似文献   

6.
An intracellular nuclease inhibitor was 1270 times purified from a heat treated cell free extract of fresh mycelia of Aspergillus oryzae, by ammonium sulfate fractionation and chromatographies using DEAE-cellulose and Sephadex G-75. The purified sample of the inhibitor showed a UV absorption curve typical for protein, and it was inactivated by proteases such as chymotrypsin. The inhibitor stoichiometrically inactivated nuclease O (an intracellular nuclease of Asp. oryzae), forming an enzyme-inhibitor complex. But, it did not affect nuclease S1, RNase T1, RNase T2 or pancreatic RNase. The inhibitor was insensitive to 10?5m p-chloromercuribenzoate or 10?4m Pb2+. Molecular weights estimated by the method of Andrews were 23,000 for the inhibitor, 47,000 for nuclease O, and 82,000 for the enzyme-inhibitor complex. The nuclease activity was recovered from the inactive complex by the action of chymotrypsin.

Nuclease O of Asp. oryzae was purified and crystallized from 113.5 kg of wet mycelia and 2 kl of culture filtrate, by salting out with ammonium sulfate and by chromatographies on CM-Sephadex C-50 and Sephadex G-100. The purified nuclease showed a single peak with apparent sedimentation constant 2.9S in an ultracentrifuge. The molecular weight measured by short column method was 64,000. The nuclease was completely inhibited by the specific nuclease inhibitor obtained from Asp. oryzae. The nuclease was activated by 0.1 mm Mg2+ and Mn2+, and completely inhibited by 1 mm EDTA. Optimum pH for activity was 7.6 for RNA and 7.4 for DNA. The nuclease degraded polyadenylic acid, polyuridylic acid and polycytidylic acid without forming detectable amount of mononucleotides. And, the main product from RNA was oligonucleotides. The enzyme showed no nonspecific phosphodiesterase activity.  相似文献   

7.
The conditions of autolysis of washed mycelia of Aspergillus oryzae were systematically examined as for temperature, pH, aeration, energy supply, and chemicals which stimulate autolysis. Below 45°C, the higher the temperature the faster was the rate of autolysis. Optimum pH of autolysis with special reference to the excretion of nucleic acid components and amino acids was 5. With the optimum conditions of autolysis settled by us, 90 to 100% of nucleic acids, 75% of protein, and 20% of sugars in the mycelia were excreted into the medium within three days.

In the presence of lipophilic compounds such as toluene and sodium salts of fatty acids, autolysis occurred much faster than in distilled water. Autolysis was inhibited by the addition of glucose and aeration.

Mycelia of Aspergillus oryzae were autolyzed in distilled water, in toluene-saturated water, or in acetate buffer, pH 5.4, at 30°C. The cytoplasmic materials disappeared from cells during autolysis, but the cell wall retained its shape even after autolysis. The disappearance of the cytoplasmic materials started from the inner part under an aerobic condition and from the outer part under an anaerobic condition. During the autolysis, 15% of the cellular proteins was excreted as free amino acids (60%) and peptides (15%). Glucose, ribose, glucosamine, and three unidentified sugars were found in autolyzate. After eighteen hours of autolysis stimulated by toluene, 81% of the cellular nucleic acids was excreted as uridine (28%), xanthine (24%), hypoxanthine (17%), and two other nucleosides or bases.  相似文献   

8.
In was found that an intracellular ribonuclease was present as an inactive form in the fresh mycelium of Asp. oryzae. It was about 3 times activated either by 3 m urea or by the autolysis of mycelium at 30°C for 20 hr. The optimum pH of the ribonuclease activity was 8.3. It was heat sensitive (60°C, 10 min), and completely inhibited by 5 mm EDTA. It was activated by 1 mm Mg2+ and inhibited by Zn2+, Ca2+, Cd2+, Co2+ and Cu2+.  相似文献   

9.
Mode of action of crystalline nuclease O obtained from autolyzed Aspergillus oryzae on RNA and synthetic homopolymers was examined. Crystalline nuclease O had no strict base specificity, although the velocity of hydrolysis was poly A > poly U > RNA > poly C. This enzyme did not degrade poly G. Digestion of high molecular weight RNA with an excess of this enzyme produced mono-, di- and trinucleotides with 5′-terminal phosphate. The amount of mono-, di- and trinucleotides was, respectively, 13.6, 70.0 and 16.4% of total degradation products. All the four bases were detected in mononucleotide fraction and 3′-terminals and 5′-terminals of oligonucleotides.  相似文献   

10.
Crystalline nuclease O obtained from autolyzed Aspergillus oryzae hydrolyzed heat-denatured calf thymus DNA 19 times faster than native DNA. Digestion of the heat-denatured DNA with an exess of the enzyme produced mono-, di- and tri-nucleotides with 5′-terminal phosphate, which amounted 3.4, 58.3 and 38.2%, respectively, of total degradation products. Hydrolysis of the native DNA with a sufficient amount of nuclease O produced mono-, di-, tri- and tetra-nucleotides with 5′-terminal phosphate, which amounted 1.9, 47.9, 36.7 and 13.6%, respectively, of total degradation products. Although nuclease O showed no strict base specificity on the native and heat-denatured DNA, di-and tri-nucleotides in the digests were resistant to further hydrolysis by nuclease O. Native γDNA was hydrolyzed by nuclease O through the mechanism of single strand break, which was shown by neutral and alkaline sucrose density gradient centrifugations.  相似文献   

11.
Properties of nuclease O, a new intracellular enzyme which was partially purified from autolyzate of Asp. Oryzae,1) are described in this paper. The purified enzyme preferentially depolymerized RNA and heat denatured DNA, but apparently did not attack native DNA. It was activated by 0.1 mm Mg2+ or Mn2+, and inactive in the presence of EDTA. Optimum pH of the activity were 7.7 for DNA and 8.2 for RNA. By heat treatment (60°C, 10 min at pH 6) the nuclease completely lost its activity for RNA and DNA. Optimum concentration of Tris buffer for enzymatic activity was 0.15~0.2m.  相似文献   

12.
The homogeneity of Aspergillus dipeptidase prepared according to the standard method established by us was ascertained by ultracentrifugation and some characteristic properties of the enzyme was further investigated.

Hydrolysis of various dipeptides by the purified dipetidase was tested in the presence of divalent metal ions such as Co++ or Zn++, and the characteristics of greatest interest may be enumerated as follows:
  1. The homogeneous dipeptidase requires Zn++ for activation in the case of the hydrolysis of leucylglycine, leucylalanine leucylleucine, etc.

  2. The homogeneous dipeptidase requires Co++ for activation in the case of the hydrolysis of glycylleucine, glycylleucine, glycylglycine, glycylphenylalanine, etc.

  3. In the case of the hydrolysis of alanylglycine, alanylleucine, valylglycine, etc., this enzyme does not require any metal ions.

  相似文献   

13.
Screening experiments for dipeptidase and aminopolypeptidase from 40 strains of molds were conducted using Leu-Gly, Gly-Leu, Ala-Gly and Gly-Gly-Leu as substrates.

The strains of Aspergillus oryzae RO-0129 A-2, IAM-2600 and IAM-2616 showed strong activities of both dipeptidase and aminopolypeptidase.

Further, optimal conditions for making culture as well as those for the extractions of the peptidases from the mycerial mats were investigated.  相似文献   

14.
15.
We have examined the effects of the enzyme inhibitors 2,4,6-trinitrobenzene sulfonic acid (TNBS) and 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) on ethylene and CO2 production in apple and tomato fruit discs. In the past these inhibitors have been used to inhibit membrane bound enzyme systems in various animal tissues. The amino reactive inhibitor TNBS was shown to decrease ethylene production in tomato discs without affecting rates of respiration; similar results were obtained with apple. The effects of the sulfhydryl reactive inhibitor DTNB were not as clearcut as TNBS. There was little effect of DTNB on ethylene production in tomato discs, however, in apple discs ethylene production was significantly reduced. DTNB also reduced the respiration rate in apple discs, although not to the same extent as ethylene production. The inhibition of DTNB was reversed by a brief treatment with dithioerythritol. The results indicate that ethylene production takes place at the cell surface.  相似文献   

16.
In order to elucidate the protease constitution of Aspergillus oryzae, systematic separation of proteases was elaborated by sequential chromatography on Amberlite CG–50, DEAE-Sephadex A–50 and CM-cellulose. As the results, three kinds of proteases, that is, acid-, neutral- and alkaline proteases were isolated and purified in crystalline form except neutral one. Purified neutral protease could not be crystallized, but was confirmed to be homogeneous by ultracentrifugal analysis. Besides these proteases, a new protease which was unknown up to the present in the constitution of Asp. oryzae proteases, was first isolated and designated as “semi-alkaline protease” according to its optimal pH.  相似文献   

17.
18.
Aspergillus oryzae produces multinucleate conidia, which makes the obtaining of homokaryons labor-intensive. Analysis of conidia by flow cytometry clarified the relationship that conidia of lower nuclear number were smaller in size. Based on this, we have developed a simple way to enrich uninucleate conidia with a membrane filter. Our results also suggest that the method is useful for elimination of heterokaryons.  相似文献   

19.
20.
1. Crude extracts of Aspergillus oryzae grown under conditions of sulphur limitation possess high arylsulphatase activity. 2. This activity can be greatly enhanced by the inclusion of tyramine or a number of other phenols in the assay medium. 3. The arylsulphatase activity of these extracts can be resolved into three distinct fractions by chromatography on DEAE-cellulose. 4. The effect of tyramine is restricted to one of these fractions only. 5. Evidence is presented which indicates that this effect is the consequence of a phenol sulphotransferase activity, which shows no requirement for 3'-phosphoadenosine 5'-phosphate as a cofactor, and which will not transfer sulphate from 3'-phosphoadenosine 5'-sulphatophosphate to potential phenolic acceptors. 6. The three enzymes differ also in their molecular weights and substrate specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号