首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Transgenic plant production mediated by Agrobacterium in Indica rice   总被引:3,自引:0,他引:3  
Summary A reproducible system has been developed for the production of transgenic plants in indica rice using Agrobacterium-mediated gene transfer. Three-week-old scutella calli served as an excellent starting material. These were infected with an Agrobacterium tumefaciens strain EHA101 carrying a plasmid pIG121Hm containing genes for -glucuronidase (GUS) and hygromycin resistnace (HygR). Hygromycin (50 mg/l) was used as a selectable agent. Inclusion of acetosyringone (50M) in the Agrobacterium suspension and co-culture media proved to be indispensable for successful transformation. Transformation efficiency of Basmati 370 was 22% which was as high as reported in japonica rice and dicots. A large number of morphologically normal, fertile transgenic plants were obtained. Integration of foreign genes into the genome of transgenic plants was confirmed by Southern blot analysis. GUS and HygR genes were inherited and expressed in R1 progeny. Mendelian segregation was observed in some R1 progeny.Abbreviations GUS ß-glucuronidase - HygR hygromycin-resistance - AS acetosyringone  相似文献   

3.
Agrobacterium tumefaciens strain LBA4404 carrying plasmid pTOK233 encoding the hygromycin resistance (hph) and beta-glucuronidase (uidA) genes has been used to transform two agronomic grass species: tall fescue (Festuca arundinacea) and Italian ryegrass (Lolium multiflorum). Embryogenic cell suspension colonies or young embryogenic calli were co-cultured with Agrobacterium in the presence of acetosyringone. Colonies were grown under hygromycin selection with cefotaxime and surviving colonies plated on embryogenesis media. Eight Lolium (six independent lines) and two Festuca plants (independent lines) were regenerated and established in soil. All plants were hygromycin-resistant, but histochemical determination of GUS activity showed that only one Festuca plant and one Lolium plant expressed GUS. Three GUS-negative transgenic L. multiflorum and the two F. arundinacea plants were vernalised and allowed to flower. All three Lolium plants were male- and female-fertile, but the Festuca plants failed to produce seed. Progeny analysis of L. multiflorum showed a 24-68% inheritance of the hph and uidA genes in the three lines with no significant difference between paternal and maternal gene transmission. However, significant differences were noted between the paternal and maternal expression of hygromycin resistance.  相似文献   

4.
5.
An efficient system for Agrobacterium-mediated transformation of Lilium × formolongi was established by preventing the drastic drop of pH in the co-cultivation medium with MES. Meristematic nodular calli were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm which harbored intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransfease II (NPTII) genes. After three days of co-cultivation on 2 g/l gellan gum-solidified MS medium containing 100 μM acetosyringone, 30 g/l sucrose, 1 mg/l picloram and different concentrations of MES, they were cultured on the same medium containing 12.5 mg/l meropenem to eliminate Agrobacterium for 2 weeks and then transferred onto medium containing the same concentration of meropenem and 25 mg/l hygromycin for selecting putative transgenic calli. Transient GUS expression was only observed by adding MES to co-cultivation medium. Hygromycin-resistant transgenic calli were obtained only when MES was added to the co-cultivation medium especially at 10 mM. The hygromycin-resistant calli were successfully regenerated into plantlets after transferring onto picloram-free medium. Transformation of plants was confirmed by histochemical GUS assay, PCR analysis and Southern blot analysis.  相似文献   

6.
We have established a reproducible procedure for transformation of shoot apices and regeneration of transgenic plants for two indica rice cultivars, white ponni (WP) and Pusa Basmathi 1 (PB 1). Four-day-old shoot apex explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA 101 harbouring a binary plasmid pRIT1. The vector contained an improved hygromycin phosphotransferase (hpt) gene for hygromycin resistance driven by actin 1 promoter and the reporter gene beta-glucuronidase intron (INT-GUS) controlled by CaMV 35S promoter. Rice shoots were induced on media containing 0.1 mg/l napthalene acetic acid (NAA), 1.0 mg/l kinetin (kn), 1.0 mg/l N(6)-benzyleaminopurin (BAP), 300 mg/l casaminoacid, 500 mg/l proline, 50 mg/l hygromycin and 500 mg/l cefotaxime. Transgenic plants were raised in pots and seeds were collected. Histochemical and polymerase chain reaction (PCR) analyses of field established transgenic rice plants and their offsprings confirmed the presence of GUS gene. Integration of T-DNA into the genome of putative transgenics was further confirmed by southern analysis. The transformation efficiency of WP was found to be ranging from 5.6 to 6.2% whereas in the case of PB1, it was from 7 to 8%. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both hpt and GUS gene.  相似文献   

7.
Four japonica varieties and two indica varieties were used for the genetic transformation of rice (Oryza sativa L.) by using Agrobacterium tumefaciens (Smith et Townsend) Conn EHA101 harboring binary vector containing GUS gene and selectable marker gene of NPTⅡ and HPT. Calli derived from mature and immature embryos of rice were infected and cocultured with Agrobacterium at logarithmic phase. The highest transformation frequency was 55.1% (indica) and 85.2% (japonica) respectively according to the estimation of hygromycin resistant calli produced. The ratio of transgenic plants regenerated from the calli of indica and japonica varieties was 37.8% and 69.0% respectively. The putative transformed plants were confirmed by GUS assay, PCR analysis and Southern blotting. The segregation of foreign genes in T1 progeny corresponded to the Mendelian ratio. This transformation procedure of rice will provide an efficient model for the transformation of monocots.  相似文献   

8.
Switchgrass (Panicum virgatum L.) has been developed into an important biofuel crop. Embryogenic calli induced from caryopses or inflorescences of the lowland switchgrass cultivar Alamo were used for Agrobacterium-mediated transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin as the selection agent. Embryogenic calli were infected with Agrobacterium tumefaciens strain EHA105. Calli resistant to hygromycin were obtained after 5 to 8 weeks of selection. Soil-grown transgenic switchgrass plants were obtained 4 to 5 months after Agrobacterium infection. The transgenic nature of the regenerated plants was demonstrated by PCR, Southern blot hybridization analysis, and GUS staining. T1 progeny were obtained after reciprocal crosses between transgenic and untransformed control plants. Molecular analyses of the T1 progeny revealed various patterns of segregation. Transgene silencing was observed in the progeny with multiple inserts. Interestingly, reversal of the expression of the silenced transgene was found in segregating progeny with a single insert.  相似文献   

9.
In the ongoing process of developing Brachypodium distachyon as a model plant for temperate cereals and forage grasses, we have developed a high-throughput Agrobacterium-mediated transformation system for a diploid accession. Embryogenic callus, derived from immature embryos of the accession BDR018, were transformed with Agrobacterium tumefaciens strain AGL1 carrying two T-DNA plasmids, pDM805 and pWBV-Ds-Ubi-bar-Ds. Transient and stable transformation efficiencies were optimised by varying the pre-cultivation period, which had a strong effect on stable transformation efficiency. On average 55% of 17-day-old calli co-inoculated with Agrobacterium regenerated stable transgenic plants. Stable transformation frequencies of up to 80%, which to our knowledge is the highest transformation efficiency reported in graminaceous species, were observed. In a study of 177 transgenic lines transformed with pDM805, all of the regenerated transgenic lines were resistant to BASTA((R)), while the gusA gene was expressed in 88% of the transgenic lines. Southern blot analysis revealed that 35% of the tested plants had a single T-DNA integration. Segregation analysis performed on progenies of ten selected T(0) plants indicated simple Mendelian inheritance of the two transgenes. Furthermore, the presence of two selection marker genes, bar and hpt, on the T-DNA of pWBV-Ds-Ubi-bar-Ds allowed us to characterize the developed transformation protocol with respect to full-length integration rate. Even when not selected for, full-length integration occurred in 97% of the transformants when using bialaphos as selection agent.  相似文献   

10.
A rapid, efficient, routine system has been established forAgrobacterium tumefaciens-mediated production of hundreds of fertile transgenic plants from commercially important rice cultivars, including an indica cultivar, Pusa Basmati 1. Calli induced from embryos of mature rice seeds were cocultivated withA. tumefaciens strain LBA4404 carrying the plasmid pTOK233, then exposed to hygromycin selection followed by an efficient regeneration system. Based on the total number of calli co-cultivated, the transformation frequencies of independent transgenic rice plants including cultivars Pusa Basmati 1, E-yi 105, E-wan 5 and Zhong-shu-wan-geng, were 13.5, 13.0, 9.1, and 9.3%, respectively. T1 seeds were harvested within 7–8 mo of initiation of mature embryo cultures. Data from Southern hybridization analysis proved that foreign genes on T-DNA were stably integrated into the rice genome at low copy/site numbers. Mendelian inheritance of the transgenes was confirmed in T1 progeny.  相似文献   

11.
Highly efficient genetic transformation protocols and the regeneration of transgenic plants of Sugraone and Crimson Seedless grapevines (Vitis vinifera L.) were achieved from embryogenic calli co-cultured with low Agrobacterium tumefaciens densities. The sensitivity of embryogenic cultures to kanamycin, as well as the effect of Agrobacterium strains, C58(pMP90) or EHA105, and the bacterial concentration (0.06 or 0.2 at Optical Density OD600) on transformation efficiency were studied. Embryogenic cultures showed different kanamycin sensitivities and the total suppression of embryo differentiation at 20 and 50 mg/l kanamycin for Crimson Seedless and Sugraone, respectively. sgfp gene expression was evaluated in callus co-cultured with each bacterial strain. Although GFP transient expression was higher with A. tumefaciens EHA105 in both cultivars at the beginning of the culture, there were no significant differences 28 days post-inoculation. However, the concentration of Agrobacterium did affected transformation efficiency: 0.06 OD600 being more effective for the transformation of Crimson Seedless and 0.2 OD600 for Sugraone. By following the optimised procedure, 21 and 26 independent transgenic plants were generated from Sugraone and Crimson Seedless respectively, three to five months post-infection. PCR analyses were carried out to verify the integration of the sgfp and nptII genes into grapevine genome and the stable integration of the sgfp gene was confirmed by Southern blot.  相似文献   

12.
Lolium temulentum L. (Darnel ryegrass) has been proposed to be used as a model species for functional genomics studies in forage and turf grasses, because it is a self-fertile, diploid species with a short life cycle and is closely related to other grasses. Embryogenic calluses were induced from mature embryos of a double haploid line developed through anther culture. The calluses were broken up into small pieces and used for Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harboring pCAMBIA1301 and pCAMBIA1305.2 vectors were used to infect embryogenic callus pieces. Hygromycin was used as a selection agent in stable transformation experiments. Hygromycin resistant calluses were obtained after 4–6 weeks of selection and transgenic plants were produced in 10–13 weeks after Agrobacterium-mediated transformation. Fertile plants were readily obtained after transferring the transgenics to the greenhouse. Transgenic nature of the regenerated plants was demonstrated by Polymerase chain reaction (PCR), Southern hybridization analysis, and GUS staining. Progeny analysis showed Mendelian inheritance of the transgenes. The transformation system provides a valuable tool for functionality tests of candidate genes in forage and turf grasses.  相似文献   

13.
Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] were produced through Agrobacterium-mediated transformation system. Embryogenic calli derived from shoot apical meristems were infected with Agrobacterium tumefaciens strain EHA105 harboring the pCAMBIA3301 vector containing the bar gene encoding phosphinothricin N-acetyltransferase (PAT) and the gusA gene encoding β-glucuronidase (GUS). The PPT-resistant calli and plants were selected with 5 and 2.5 mg l−1 PPT, respectively. Soil-grown plants were obtained 28–36 weeks after Agrobacterium-mediated transformation. Genetic transformation of the regenerated plants growing under selection was demonstrated by PCR, and Southern blot analysis revealed that one to three copies of the transgene were integrated into the plant genome of each transgenic plant. Expression of the bar gene in transgenic plants was confirmed by RT-PCR and application of herbicide. Transgenic plants sprayed with Basta containing 900 mg l−1 of glufosinate ammonium remained green and healthy. The transformation frequency was 2.8% determined by herbicide application which was high when compared to our previous biolistic method. In addition, possible problems with multiple copies of transgene were also discussed. We therefore report here a successful and reliable Agrobacterium-mediated transformation of the bar gene conferring herbicide-resistance and this method may be useful for routine transformation and has the potential to develop new varieties of sweet potato with several important genes for value-added traits such as enhanced tolerance to the herbicide Basta.  相似文献   

14.
A method for genetic transformation of Saintpaulia ionantha by co-cultivation of in vitro-grown leaves and petioles with Agrobacterium tumefaciens is described. Two bacterial strains, EHA105 and A281 both harbouring the binary plasmid pKIWI105 carrying the genes uidA and nptII, were used in the experiments. Regenerants were not obtained using the disarmed strain EHA105. The oncogenic strain A281 resulted in efficient transient and stable expression of the transferred traits for petiole explants only. After transformation and regeneration, the integration of the transgenes in the plant genome was confirmed by PCR analysis and Southern hybridization.  相似文献   

15.
Agrobacterium-mediated transformation of Bangladeshi Indica rices   总被引:1,自引:0,他引:1  
Morphologically normal, fertile transgenic plants were obtained by co-culturing embryogenic calli of the Bangladeshi Indica rice cultivars BR26 and Binni with Agrobacterium tumefaciens strain LBA4404 carrying the super binary vector pTOK233. Acetosyringone (100 microM) in the medium during co-culture (25-28 degrees C) and selection on hygromycin B (50 mg l(-1)) were essential for efficient transformation. Stable integration and expression of beta-glucuronidase, neomycin phosphotransferase and hygromycin phosphotransferase genes in regenerated plants were confirmed by histochemical and fluorometric assays, ELISA and Southern analysis. Two to 3 copies of T-DNA were integrated into regenerated plants; transgene expression did not correlate with gene copy number. Mendelian segregation of transgenes occurred in T1 seed progeny.  相似文献   

16.
Tang W 《Plant cell reports》2003,21(6):555-562
Additional virulence (vir) genes in Agrobacterium tumefaciens and sonication were investigated for their impact on transformation efficiency in loblolly pine (Pinus taeda L.). Mature zygotic embryos of loblolly pine were co-cultivated with disarmed A. tumefaciens strain EHA105 containing either plasmid vector pCAMBIA1301 or vector pCAMBIA1301 with an additional 15.8-kb fragment carrying extra copies of the Vir B, Vir C, and Vir G regions from the supervirulent plasmid pTOK47. pCAMBIA1301 contains hygromycin resistance and the beta-glucuronidase (GUS) reporter gene. Expression of GUS was observed after 3-6 days of co-cultivation, with peak expression at approximately 21 days. The highest numbers of GUS-expressing areas were visible up to 21 days after co-cultivation, declining rapidly thereafter. Both transient and stable transformation efficiencies increased when the explants were sonicated before co-cultivation and/or the additional virB, virC, and virG genes were included with the pCAMBIA1301 plasmid T-DNA. Use of the plasmid with additional vir genes and sonication dramatically enhanced the efficiency of Agrobacterium-mediated gene transfer not only in transient expression but also in the recovery of hygromycin-resistant lines. Stably transformed cultures and transgenic plants were produced from embryos transformed with A. tumefaciens EHA105 carrying pCAMBIA1301 or pCAMBIA1301+pTOK47 in the three families of loblolly pine. The presence of the introduced GUS and hygromycin phosphotransferase genes in the transgenic plants was confirmed by polymerase chain reaction and Southern hybridization analyses.  相似文献   

17.
A highly efficient transformation procedure was developed for Lobelia erinus. Leaf or cotyledon discs were inoculated with Agrobacterium tumefaciens strain EHA105 harboring the binary vector plasmid pIG121Hm, which contains a -glucuronidase gene with an intron as a reporter gene and both the neomycin phosphotransferase II and hygromycin phosphotransferase genes as selectable markers. The hygromycin-resistant calli produced on the selection medium were transferred to MS medium supplemented with 0.5 mg/l benzyladenine and 0.2 mg/l indole-3-acetic acid for regeneration of adventitious shoots. Transgenic plants were obtained as a result of the high regeneration rate of the transformed calli, which was as high as 83%. In contrast, no transgenic plant was obtained by the procedure of direct shoot formation following inoculation with A. tumefaciens. Transgenic plants flowered 3–4 months after transformation. Integration of the transgenes was detected using PCR and Southern blot analysis, which revealed that one to several copies were integrated into the genomes of the host plants. The transformation frequency at the stage of whole plants was very high—45% per inoculated disc.Abbreviations BA: 6-Benzyladenine - 2,4-D: 2,4-Dichlorophenoxyacetic acid - GUS: -Glucuronidase - IAA: Indole-3-acetic acidCommunicated by G.C. Phillips  相似文献   

18.
An Agrobacterium-mediated model transformation system was standardized for the wetland monocot Typha latifolia L. to achieve the long-term objective of introducing candidate genes for phytoremediation. Two binary plasmid vectors, pCAMBIA1301/EHA105 and pTOK233/LBA4404, both containing the gus (beta-glucuronidase) and hptII (hygromycin phosphotransferase II) genes, were used for transformation. Fifty-day-old 5 mg/l picloram-derived calli were cocultivated and selected on medium containing 20 mg/l or 40 mg/l hygromycin. Resistant calli were regenerated on medium supplemented with 5 mg/l 6-benzylaminopurine, with or without 20 mg/l or 40 mg/l hygromycin and with or without charcoal (10 g/l). Transient GUS activity in explants ranged between 28% and 36%. Hygromycin-resistant calli, selected after 3 months, showed stable GUS expression. A total of 46 plants were regenerated and established in the greenhouse; 13 showed stable GUS expression. Cocultivation of dark culture-derived calli, directly selected on regeneration medium containing 20 mg/l hygromycin and rooted on medium with 20 mg/l hygromycin was the best protocol. The addition of charcoal did not have any effect on regeneration. PCR and Southern analyses of transgenic calli and transgenic plants confirmed the presence of the introduced genes. In conclusion, T. latifolia could be genetically transformed by Agrobacterium tumefaciens.  相似文献   

19.
A highly reproducible Agrobacterium-mediated transformation system was developed for the wetland monocot Juncus accuminatus. Three Agrobacterium tumefaciens binary plasmid vectors, LBA4404/pTOK233, EHA105/pCAMBIA1201, and EHA105/pCAMBIA1301 were used. All vectors contained the 35SCaMV promoter driven, intron containing, β-glucuronidase (gus), and hygromycin phosphotransferase (hptII) genes within their T-DNA. After 48 h of cocultivation, 21-d-old seedling derived calli were placed on medium containing timentin at 400 mg l−1, to eliminate the bacteria. Calli were selected on MS medium containing 40 or 80 mg l−1 hygromycin, for 3 mo. Resistant calli were regenerated and rooted on MS medium containing hygromycin, 5 mg l−1(22.2 μM) of 6-benzylamino-purine (BA) and 0.1 mg l−1(0.54 μM) of alpha-naphthaleneacetic acid (NAA), respectively. Seventy-one transgenic cell culture lines were obtained and 39 plant lines were established in the greenhouse. All the plants were fertile, phenotypically normal, and set viable seed. Both transient and stable expression of the gus gene were demonstrated by histochemical GUS assays of resistant calli, transgenic leaf, root, inflorescence, seeds, and whole plants. The integration of gus and hptII genes were confirmed by polymerase chain reaction (PCR) and Southern analysis of both F0 and F1 progenies. The integrated genes segregated to the subsequent generation in Mendelian pattern. To our knowledge, this is the first report of the generation of transgenic J. accuminatus plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号