首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is growing evidence for sex and gender differences in the clinical manifestation and outcomes of human diseases. Human primary endothelial cells represent a useful cardiovascular model to study sexual dimorphisms at the cellular level. Here, we analyzed sexual dimorphisms of the secretome after serum starvation using human umbilical vein endothelial cells (HUVECs) from twin pairs of the opposite sex to minimize the impact of varying genetic background. HUVECs were starved for 5 and 16 h, respectively, and proteins of the cell culture supernatants were analyzed by tandem mass spectrometry. Altogether, 960 extracellular proteins were identified of which 683 were amendable to stringent quantification. Significant alterations were observed for 455 proteins between long-term and short-term starvation and the majority were similar in both sexes. Only 5 proteins showed significant sex-specific regulation between long-versus short-term starvation. Furthermore, 19 unique proteins with significant sexual dimorphisms at the same time points of serum starvation were observed. A larger number of proteins, for example tissue factor inhibitor 2 (TFPI2), displayed higher levels in the supernatants of females compared to male cells after long term serum starvation that might point to higher adaptation capacity of female cells. The overall results demonstrate that male and female cells differ in their secretome.  相似文献   

2.
Long-term culture of human endothelial cells   总被引:9,自引:0,他引:9  
Summary Human umbilical vein endothelial cells can be grown in vitro for 28 passages (CPDL 58) in Medium 199 supplemented with newborn bovine serum and a partially purified growth factor derived from bovine brain. Newborn bovine serum is superior to fetal bovine serum for the proliferation of human umbilical vein endothelial cells seeded at low density in the presence of the growth factor. The endothelial cells, which can be passaged every 7 to 10 d at a 1-to-5 split ratio, retain their morphological and biochemical characteristics. The proliferation of cells seeded at low density (103/cm2) is proportional to the concentration of the growth factor present in the medium. The growth factor, which has an isoelectric point between 5.0 and 5.5, can support cell proliferation at reduced serum concentrations; half-maximal growth is achieved in medium containing the growth factor and 3% serum. The brain endothelial cell growth factor does not stimulate DNA synthesis significantly in cultures of human skin fibroblasts. This research was supported by grants from the U.S. Public Health Service (AG 01732, HL 16387, and HL 07080), the Cystic Fibrosis Foundation, and the New York and American Heart Associations. Victor B. Hatcher is an Established Fellow of the New York Heart Association and a recipient of the Ann Weinberg Cystic Fibrosis Research Scholarship Award.  相似文献   

3.
Extracellular acidic pH-activated chloride channel ICl, acid, has been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to characterize ICl,acid in human umbilical vein endothelial cells(HUVECs). The activation and deactivation of the current rapidly and repeatedly follows the change of the extracellular solution at pH 4.3, with the threshold pH 5.3. In addition, at very positive potentials, the current displays a time-dependent facilitation. pH-response relationship for ICl,acid revealed that EC50 is pH 4.764 with a threshold pH value of pH 5.3 and nH of 14.545. The current can be blocked by the Cl channel inhibitor DIDS (100 μM). In summary, for the first time we report the presence of proton-activated, outwardly rectifying chloride channel in HUVECs. Because an acidic environment can develop in local myocardium under pathological conditions such as myocardial ischemia, ICl,acid would play a role in regulation of EC function under these pathological conditions.  相似文献   

4.
The present study compares some phenotypic and physiologic characteristics of microvascular and macrovascular endothelial cells from within one human organ. To this end microvascular endothelial cells from human full-term placenta (PLEC) were isolated using a new method and compared with macrovascular human umbilical vein endothelial cells (HUVEC) and an SV40-transformed placental venous endothelial cell line (HPEC-A2). PLEC were isolated by enzymatic perfusion of small placental vessels, purified on a density gradient and cultured subsequently. Histological sections of the enzyme-treated vessels showed a selective removal of the endothelial lining in the perfused placental cotyledons. The endothelial identity of the cells was confirmed by staining with the endothelial markers anti-von Willebrand factor, Ulex europaeus lectin and anti-QBEND10. The cells internalized acetylated low-density lipoprotein and did not show immunoreactivity with markers for macrophages, smooth muscle cells and fibroblasts. The spindle-shaped PLEC grew in swirling patterns similar to that described for venous placental endothelial cells. However, scanning electron microscopic examination clearly showed that PLEC remained elongated at the confluent state, in contrast to the more polygonal phenotype of HPEC-A2 and HUVEC that were studied in parallel. The amount of vasoactive substances (endothelin-1,2, thromboxane, angiotensin II, prostacyclin) released into the culture medium and the proliferative response to cytokines was more similar to human dermal microvessels (MIEC) derived from non-fetal tissue than to HUVEC. Potent mitogens such as vascular endothelial growth factors (VEGF121, VEGF165) and basic fibroblast growth factor (FGF-2) induced proliferation of all endothelial cell types. Placental growth factors PIGF-1 and PIGF-2 effectively stimulated cell proliferation on PLEC (142 +/- 7% and 173 +/- 10%) and MIEC (160 +/- 20% and 143 +/- 28%) in contrast to HUVEC (9 +/- 8% and 15 +/- 20%) and HPEC-A2 (15 +/- 7% and 24 +/- 6%) after 48 h incubation time under serum-free conditions. These data support evidence for (1) the microvascular identity of the isolated PLEC described in this study, and (2) the phenotypic and physiologic heterogeneity of micro- and macrovascular endothelial cells within one human organ.  相似文献   

5.
睾酮对人血管内皮细胞产生NO、tPA和PAI-1的影响   总被引:4,自引:0,他引:4  
目的:观察不同浓度睾酮对人血管内皮细胞生长、产生舒张因子及纤溶活性的影响.方法:体外培养人脐静脉内皮细胞(HUVEC),分为五个浓度睾酮组及单纯培养基对照组.做MTT实验观察睾酮对HUVEC生长的影响;还原酶法测定各组HUVEC释放NO量;ELISA法测定各组培养基中纤溶酶原激活物(tPA)及其抑制物(PAI-1)含量.结果:3×10-10mol/L-3×10-8mol/L睾酮组与对照组相比细胞生长良好,无明显差别;而大于生理剂量的两组(3×10-6~3×10-1mol/L)3 d后细胞生长明显受到抑制(P<0.05).各浓度睾酮组产生NO量与对照组无明显区别.而3×10-10 mol/L~3×10-8 mol/L睾酮组tPA含量明显高于对照组(P<0.01);大剂量组tPA产生明显减少(P<0.01).所有实验组的PAI-1含量均明显降低.结论:生理及略低于生理剂量的睾酮对HUVEC生长及释放NO无不利影响,且增加纤溶活性.说明生理剂量睾酮对血管内皮功能、心血管系统有一定的保护作用,有利于防止动脉粥样硬化的发生、发展.  相似文献   

6.
7.
目的:探讨重组脂联素对第三丁基过氧化氢(t-BHP)诱导的人脐静脉内皮细胞(HUVECs)凋亡的影响及其相关的分子机制。方法:以HUVECs作为研究对象,给予t-BHP处理,模拟体外HUVECs氧化损伤细胞凋亡模型。在此基础上,用携带重组脂联素基因的腺病毒转染HUVECs,观察重组脂联素对t-BHP诱导的HUVECs凋亡的影响。用MTT法检测细胞增殖活力。Hochest/PI荧光染色检测细胞凋亡率。Western blot检测细胞凋亡相关蛋白p-JNK、JNK和Caspase 3表达水平的变化。结果:100 μmol/L的t-BHP作用8 h可诱导HUVECs发生凋亡。与对照组相比,t-BHP组p-JNK、active caspase 3表达增多(P<0.01)。HUVECs高表达重组脂联素基因后,可明显抑制t-BHP诱导的HUVECs凋亡(P<0.01),下调t-BHP诱导的p-JNK、active caspase 3表达。结论:持续t-BHP氧化损伤可诱导HUVECs发生凋亡。重组脂联素可有效抑制t-BHP诱导的HUVECs凋亡,其机制与p-JNK、active caspase 3的表达下调有关。  相似文献   

8.
Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin’s effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin’s angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and mRNA expression in cultured HUVECs in a concentration-dependent manner. Taken together, these results suggest that scutellarin promotes angiogenesis and may form a basis for angiogenic therapy.  相似文献   

9.
目的:观察红杉醇(Scq)对高糖诱导的人脐静脉内皮细胞(HUVECs)损伤的保护作用及机制。方法:原代培养HUVECs,红杉醇(0.1,1,10μmol/L)预处理1h后,30mmol/L葡萄糖诱导内皮细胞损伤。5-溴脱氧尿嘧啶核苷(BrdU)掺入法检测细胞增殖,流式细胞术检测细胞周期,2’7’-二乙酰二氯荧光素(DCFH-DA)免疫荧光法检测细胞内活性氧簇(R0s)水平,比色法检测细胞-氧化氮(NO)、丙二醛(MDA)及过氧化氢(H202)水平,real-timePCR和Westernblot检测细胞内皮型一氧化氮合酶(eNos)及NADPH氧化酶4(NOX4)mRNA和蛋白表达。结果:Seq预处理1h后能明显减轻高糖诱导的血管内皮细胞损伤,促进细胞增殖,降低胞内NOX4的表达及ROS、MDA及H202水平,上调eNOS的表达及NO水平。结论:Seq对高糖诱导的内皮细胞损伤具有一定的保护作用,其机制可能与其抗氧化、上调eNOS的表达有关。  相似文献   

10.
Metabolic responses induced by thrombin in human umbilical vein endothelial cells (HUVECs) were investigated by using the cytosensor technique. Thrombin increased the extracellular acidification rate of endothelial cells, measured as an index of metabolic activity with a cytosensor microphysiometer, in a concentration-dependent fashion with an EC(50) of 1.27+/-0.59 IU/ml, which was abolished by the MAP kinase inhibitor PD98059. When intracellular Ca(2+) was chelated or PKC was inactivated, PD98059 failed to abolish the thrombin-induced acidification rate response in HUVECs. In addition, the tyrosine kinase inhibitor genistein, PKC inhibitor calphostin C, and Na(+)/H(+)exchanger antagonist MIA also partly inhibited thrombin-induced acidification rate responses. It is suggested that thrombin stimulated rapid metabolic responses via MAP kinase in HUVECs, which are calcium- and PKC-dependent.  相似文献   

11.
Peroxidation products of polyunsaturated fatty acids may cause growth inhibition of cells in culture. This study was carried out to elucidate to what extent peroxidation products may be found in growth media, with and without cells and albumin, using thiobarbituric acid-reactive substances (TBARS) and protein carbonyl groups as measures of peroxidation. The growth of human microvascular endothelial cells was studied as influenced by docosahexaenoic (C22:6, n - 3), arachidonic acid (C20:4. n - 6), and serum albumin. Cell growth was strongly inhibited by the fatty acids, and the inhibition was related to the concentration of TBARS in the medium. Defatted albumin (0.5 g/100 ml) nullified the increase of TBARS in the medium and released the growth inhibition by the fatty acids. With polyunsaturated fatty acids (PUFA) there was a time- and concentration-dependent increase in media TBARS, observed both with and without cells, but the TBARS increase was somewhat greater in the presence of cells. Surprisingly, TBARS in cell-free media also increased somewhat upon increasing the albumin concentration from 0.5 to 5 g/100 ml, and the TBARS increase differed among various preparations of albumin. Unexpectedly, the albumin that had not been defatted gave the lowest TBARS values. The amount of protein carbonyl groups did not differ among various albumin preparations. It is concluded that PUFA may autooxidize in media used for cell cultures, and thereby cause an unspecific growth inhibition, which can be prevented by a low albumin concentration. However, even defatted albumin preparations may contain lipid peroxidation products, the causes and implications of which remain to be elucidated.  相似文献   

12.
目的:探讨腺苷对脐静脉内皮细胞(human umbilical vein endothelial cells,HUVEC)三维管状结构形成的影响.方法:建立上、下两层内皮细胞,中间为胶原凝胶的三维培养方式.设对照和试验各3孔.对照孔不加腺苷,实验孔内加入10-4mol/L腺苷.观察并记录特定视野下芽生的管状结构数目.结果:HUVEC可以在Ⅰ型胶原凝胶中形成三维网状结构,腺苷实验组细胞生长快,出芽快,管状结构粗大,甚可形成贯穿胶原的三维网状结构.血管芽生数与对照组比较在24 h、48 h、72 h、96 h均有统计学差异(P<0.05或P<0.01).结论:腺苷对HUVEC三维网状结构的形成有促进作用.  相似文献   

13.
Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments.  相似文献   

14.
Abstract

Hericium erinaceum is an edible and medicinal mushroom widely used in Korea, Japan, and China. On the search for biologically active compounds supporting the medicinal usage, the MeOH extract of the fruiting bodies of H. erinaceum was investigated for its chemical constituents. Six compounds were isolated and identified as hericenone D (1), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (2), erinacerin B (3), hericenone E (4), hericenone F (5) and isohericerin (6) by comparing their spectroscopic data with previously reported values. The inhibitory effects on adriamycin-induced cellular senescence in human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs) of the isolates (16) were studied. Among the isolated compounds, ergosterol peroxide (2) reduced senescence associated β-galactosidase (SA-β-gal) activity increased in HUVECs treated with adriamycin. According to experimental data obtained, the active compound may inspire the development of a new pharmacologically useful substance to be used in the treatment and prevention of age-related diseases.  相似文献   

15.
Lymphatic vessels guide interstitial fluid, modulate immune responses by regulating leukocyte and antigen trafficking to lymph nodes, and in a cancer setting enable tumor cells to track to regional lymph nodes. The aim of the study was to determine whether primary murine lymphatic endothelial cells (mLECs) show conserved vascular endothelial growth factor (VEGF) signaling pathways with human LECs (hLECs). LECs were successfully isolated from murine dermis and prostate. Similar to hLECs, vascular endothelial growth factor (VEGF) family ligands activated MAPK and pAkt intracellular signaling pathways in mLECs. We describe a robust protocol for isolation of mLECs which, by harnessing the power of transgenic and knockout mouse models, will be a useful tool to study how LEC phenotype contributes to alterations in lymphatic vessel formation and function.  相似文献   

16.
Hot-water extracts of low-grade green tea were precipitated with ethanol, deproteinized with trichloroacetic acid, neutralized with NaOH and fractionated by DEAE-cellulose DE-52 column chromatography to yield three (3) of unexplored polysaccharide-conjugate fractions termed gTPC1, gTPC2 and gTPC3. Monosaccharide and amino acid composition, contents of total neutral sugars, proteins and moistures, HPGPC distribution and Zeta potentials of gTPC1-3 were investigated. Exposure of human umbilical vein endothelial (HUVE) cells to high glucose (33 mM) for 12 h significantly decreased cell viability relative to normal glucose control (p < 0.001). As compared with cell injury group, gTPC1-3 at all of three dose levels (50, 150 and 300 μg/mL) were found to possess remarkably protective effects on HUVE cells against impairments induced by high glucose in a dose-dependent manner (p < 0.05, p < 0.001). To contribute toward our understanding of the cell-based protection mechanism of gTPC1-3, the latter were subjected to self-oxidation of 1,2,3-phentriol assay, and their scavenging effects were observed as 55.1%, 47.6% and 47.9% at the concentration of 300 μg/mL, respectively. On the basis of the fact that high glucose-induced endothelial dysfunction involves in the overproduction of reactive oxygen species (ROS) and contributes to the vascular complications in patients with diabetes, inhibitory effects of gTPC1-3 on high glucose-mediated HUVE cell loss are, at least in part, correlated with their potential scavenging potency of ROS. Taken together, gTPC1-3 could be developed as non-cytotoxic candidates of therapeutic agent for diabetic vascular complications.  相似文献   

17.
Liu J  Wei S  Tian L  Yan L  Guo Q  Ma X 《Peptides》2011,32(1):86-92
The endomorphin-1 (EM1) and endomorphin-2 (EM2) are endogenous opioid peptides, which modulate extensive bioactivities such as pain, cardiovascular responses, immunological responses and so on. The present study was undertaken to investigate the effects of EM1/EM2 on the primary cultured human umbilical vein endothelial cells (HUVECs) damaged by high glucose. PI AnnexinV-FITC detection was performed to evaluate the apoptosis rate. Levels of nitric oxide (NO) and nitric oxide synthase (NOS) activity were measured by the Griess reaction and the conversion of 3H-arginine to 3H-citrulline, respectively. Endothelin-1 (ET-1) was evaluated by the enzyme-linked immunosorbent assay (ELISA). Cell proliferation was determined by the MTT viability assay. mRNA expression of endothelial nitric oxide synthase (eNOS) and ET-1 were measured by real-time PCR. Our data showed that EM1/EM2 inhibited cell apoptosis. The high glucose induced increase in expression of NO, NOS and ET-1 were significantly attenuated by pretreatment with EM1/EM2 in a dose dependent manner. In addition, EM1/EM2 suppressed the mRNA eNOS and mRNA ET-1 expression in HUVECs under high glucose conditions. Naloxone, the nonselective opioid receptor antagonist, did not influence the mRNA eNOS expression when it was administrated on its own; but it could significantly antagonize the effects induced by EM1/EM2. Furthermore, in all assay systems, EM1 was more potent than EM2. The results suggest that EM1/EM2 have a beneficial effect in protecting against the endothelial dysfunction by high glucose in vitro, and these effects were mediated by the opioid receptors in HUVECs.  相似文献   

18.
The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC.  相似文献   

19.
Endothelial cells perform a large array of physiological functions that are influenced by their cellular heterogeneity in the different vascular beds. Vein endothelial cells isolated from the umbilical cords are commonly used to study vascular endothelium. Primary cultures of these cells, however, have low proliferative capacity and a limited life span. We have immortalized bovine umbilical vein endothelial cells (BUVEC) by transfection with an expression vector containing the human papillomavirus type 16 E6E7 oncogenes. Expression of E6E7 extended the life span of BUVEC from 40 to more than 1-20 cell replication cycles with no signs of senescence. Four immortalized clones were isolated and found to maintain endothelial cell properties, such as the uptake of acetylated low density lipoprotein, the expression of the von Willebrand protein, the binding of endothelial cell-specific lectins and proliferative responses to the specific endothelial cell mitogen, vascular endothelial growth factor. Moreover, clone BVE-E6E7-1, like its wild-type counterparts, expressed prolactin mRNA and decreased its proliferation in response to the anti-angiogenic 16-kDa fragment of prolactin. This clone showed little signs of genetic instability as revealed by centrosome and chromosome number analysis. Thus, immortalized E6E7 BUVEC cell lines retain endothelial cell characteristics and could facilitate studies to investigate the action of regulatory factors of vascular endothelium. Moreover, being the first non-human umbilical vein endothelial cell lines, their use should provide insights into the mechanisms governing species-related heterogeneity of endothelial cells.  相似文献   

20.
The interaction of Listeria monocytogenes with human umbilical vein endothelial cells was studied. We show that L. monocytogenes invades human umbilical vein endothelial cells independently of internalin A, internalin B, internalin C, and ActA. L. monocytogenes replicates efficiently inside the cells and moves intracellularly by the induction of actin polymerization. We further show that L. monocytogenes-infection of human umbilical vein endothelial cells induces interleukin-6 and interleukin-8 expression during the first 6 h of infection. The expression of MCP-1 and the adhesion molecules VCAM-1 and ICAM-1 was not altered under the experimental conditions used here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号