首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The laminin variant of adult skeletal muscle fibres and Schwann cells is known as merosin, and is composed of M-B1-B2 chains. Blood vessels and immature fibres express the A chain in association with B1 or S, and B2. The importance of merosin has recently been shown by its absence in one form of congenital muscular dystrophy and in the mutantdy/dy mouse, and by its partial deficiency in Fukuyama congenital muscular dystrophy. We have examined the immunocytochemical localization of the M, A, B1 and B2 laminin chains in human fetal muscle from 7 to 40 weeks' gestation to ascertain their developmental expression. The B1 and B2 chains were detected on muscle fibres at 7 weeks, but only traces of the A or M chain were seen. By 21 weeks maximal levels of all four subunits were observed on all fibres. This suggests that the basement membrane is still being assembled until this stage of development. Expression of the A chain on muscle fibres was not reduced until 34 weeks and low levels persisted at birth. The concomitant expression of the M and A chains at early stages may indicate a laminin variant, in addition to merosin, that is highly expressed in fetal muscle. Merosin was seen in intramuscular nerves at 11 weeks. B1 and B2 subunits were detected in blood vessels from 7 weeks' gestation and the A chain from 11 weeks. The capillary network, however, is not fully established in fetal muscle. Merosin is therefore detected early during human fetal muscle development, and this should be taken into account when assessing aborted fetuses at risk for congenital muscular dystrophy.  相似文献   

2.
To define the role of the extracellular matrix (ECM) in hepatogenesis, we examined the temporal and spatial deposition of fibronectin, laminin and collagen types I and IV in 12.5-21.5 day fetal and 1, 7 and 14 day postnatal rat livers. In early fetal liver, discontinuous deposits of the four ECM components studied were present in the perisinusoidal space, with laminin being the most prevalent. All basement membrane zones contained collagen type IV and laminin, including those of the capsule (mesothelial), portal vein radicles and bile ductules. Fibronectin had a distribution similar to that of collagen type IV early in gestation. However, at later gestational dates, fibronectin distribution in the portal triads approached that of collagen type I, being present in the interstitial connective tissues; whereas, collagen type IV and laminin were restricted to vascular and biliary basement membrane zones in those regions. The cytoplasm of some sinusoidal lining cells and hepatocytes reacted with antibodies to extracellular matrix components. By electron microscopy the immunoreactive material was localized in the endoplasmic reticulum, indicating the ability of these cells to synthesize these ECM proteins. Biliary ductular cells had prominent intracytoplasmic staining for laminin and collagen type IV from day 19.5 gestation until 7 days of postnatal life, but lacked demonstrable fibronectin or collagen type I. These results demonstrate that by 12.5 days of gestation the rat liver anlage has deposited a complex extracellular matrix in the perisinusoidal space. The prevalence of laminin in the developing hepatic lobules suggests a possible role for this glycoprotein in hepatic morphogenesis. In view of the intimate association of the hepatic lobular extracellular matrix with the developing vasculature, we hypothesize that laminin provides a scaffold of the developing liver, but once the ontogenesis is complete, intrahepatic perisinusoidal laminin expression is suppressed.  相似文献   

3.
The expression of the GST1, GST2, and GST3 loci in fetal, neonatal, and infant tissues has been studied using starch gel electrophoresis and chromatofocusing. Each locus demonstrated developmental changes in expression, some of which were specific to a single tissue while others occurred in several tissues. GST1 was not usually expressed in any of the tissues studied before 30 weeks of gestation but steadily increased thereafter until adult levels were reached in late infancy. In neonates and older infants the frequencies of the GST1*0, GST1*1, and GST1*2 alleles were 0.79, 0.07, and 0.14, respectively. GST2 was always expressed in liver and adrenal but was only weakly expressed in spleen, cardiac muscle, and diaphragm. In kidney this locus was not usually expressed until nearly 1 year after birth. The GST3 isoenzymes were present in all fetal, neonatal, and infant tissues, although their expression in liver decreased after 30 weeks of gestation. Other isoenzymes with fast anodal mobilities were also identified in several tissues; these are believed to be GST3 isoenzymes that have undergone posttranslational modification rather than products of the putative GST4 locus. No specifically fetal isoenzymes were detected.  相似文献   

4.
In situ hybridization (ISH) and immunocytochemistry were used to localize sites of synthesis and deposition of the basement membrane glycoprotein laminin during development in the postimplantation mouse embryo and extraembryonic membranes. In addition, similar studies were performed on postnatal viscera during the first 20 days after birth. Up to 10 days post coitum, embryonic laminin synthesis was confined to parietal endoderm. In maternal tissue, intense laminin mRNA expression was detected in decidual cells in the mesometrial and antimesometrial endometrium at 5-7 days. At 10 days, uniform expression was still seen within the mesometrial endometrium, with higher levels around migrating trophoblast, but in the antimesometrial aspect expression was restricted to the basal zone. High levels of mRNA expression persisted in parietal endoderm throughout gestation but much lower levels were detected in visceral yolk sac. In the mature placenta, laminin mRNA expression was also found associated with fetal vessels in the labyrinth and giant cells at the fetal/maternal boundary. In the embryo, the external limiting membrane of the cerebral vesicles and spinal cord stained for laminin protein and detectable mRNA was found in the pia mater. Growing peripheral nerves and dorsal and ventral root fibres expressed laminin mRNA and stained for laminin protein. Laminin mRNA expression was found in ureteric buds and nephrogenic vesicles (but not in metanephric blastema) during early prenatal kidney development, and in glomeruli, Bowman's capsule, loops of Henle and collecting duct cells at later stages of development, and after birth. All these structures possessed laminin-rich basement membrane (BM). Laminin mRNA expression fell to below detectable levels in the kidney around weaning. In the gut, laminin expression and protein staining was confined to the muscularis externa and the lamina propria during embryogenesis. After birth, the muscularis externa, muscularis mucosa and lamina propria cells corresponding to fibroblasts had detectable laminin mRNA, but in adult gut no laminin mRNA could be demonstrated in any cell type. In liver, low levels of laminin mRNA were seen in the capsule and in periportal connective tissue. After birth, laminin mRNA was associated with intrahepatic bile channels; no laminin mRNA was detected in the parenchyma and protein deposition was restricted to blood sinus BM. In the adult liver, no laminin mRNA was detected in any cell type. The developing heart showed uniform expression of laminin mRNA from 12 days to before birth. Postnatally, labelling was restricted to connective tissue cells.  相似文献   

5.
Endoglin is a component of the receptor complex for transforming growth factor (TGF)-β1 and TGF-β3. We analysed its expression by immunohistochemistry in human embryos at 4–8 weeks of gestation and in hearts ranging from 4–13 weeks old. We compared endoglin distribution with that of TGF-β receptors type I (TβR-I), type II (TβR-II) and betaglycan. Endoglin was found on endothelial cells in all tissues examined, consistent with its expression in adult blood vessels. TβR-I, TβR-II and betaglycan were observed on most cell types and had an overall similar pattern of distribution. Endoglin was detected on the endocardium as early as 4 weeks, but was absent from myocardium. It was present at high levels on the endocardial cushion tissue mesenchyme from 5–8 weeks’ gestation, during heart septation and valve formation, and subsequently decreased as the valves matured. Endoglin expression in heart extracts was confirmed by Western blot analysis. TβR-I, TβR-II and betaglycan were mostly found on cardiac myocytes, but were detectable at low levels on endocardium. They were expressed transiently on cushion mesenchyme, albeit at much lower levels than endoglin. All four components of the TGF-β receptor complex were detected by RT-PCR in embryonic heart. Thus transient up-regulation of the components of the TGF-β receptor complex, and particulartly of endoglin, is associated with heart septation and valve formation during early human development.  相似文献   

6.
Proliferation of cardiomyocytes and interstitial cells in the cardiac ventricle of the mouse during pre- and postnatal development was studied. Furthermore, the number of cardiomyocyte and interstitial cell nuclei per unit area was determined on histological sections. The labelling index of cardiomyocytes decreases from 23% on day 14 of gestation to about zero at 3 weeks after birth. The number of cardiomyocyte nuclei per unit area increases up to day 16 of gestation and then continuously declines. This coincides with the concept that the increase in size of the heart during early fetal life is mainly due to hyperplasia, while during late fetal life and after birth it is mainly, and during adult life exclusively, due to hypertrophy of cardiomyocytes. Proliferation of interstitial cells continues up to 5 days after birth and then decreases. The ratio of cardiomyocytes to interstitial cells decreases by a factor of about 10 between day 14 of gestation and 3 weeks after birth.  相似文献   

7.
Proliferation of cardiomyocytes and interstitial cells in the cardiac ventricle of the mouse during pre- and postnatal development was studied. Furthermore, the number of cardiomyocyte and interstitial cell nuclei per unit area was determined on histological sections. The labelling index of cardiomyocytes decreases from 23% on day 14 of gestation to about zero at 3 weeks after birth. the number of cardiomyocyte nuclei per unit area increases up to day 16 of gestation and then continuously declines. This coincides with the concept that the increase in size of the heart during early fetal life is mainly due to hyperplasia, while during late fetal life and after birth it is mainly, and during adult life exclusively, due to hypertrophy of cardiomyocytes. Proliferation of interstitial cells continues up to 5 days after birth and then decreases. the ratio of cardiomyocytes to interstitial cells decreases by a factor of about 10 between day 14 of gestation and 3 weeks after birth.  相似文献   

8.
Laminins are the major glycoproteins present in all basement membranes. Previously, we showed that perlecan is present during human development. Although an overview of mRNA-expression of the laminin β1 and β2 chains in various developing fetal organs is already available, a systematic localization of the laminin β1 and β2 chains on the protein level during embryonic and fetal human development is missing. Therefore, we studied the immunohistochemical expression and tissue distribution of the laminin β1 and β2 chains in various developing embryonic and fetal human organs between gestational weeks 8 and 12. The laminin β1 chain was ubiquitously expressed in the basement membrane zones of the brain, ganglia, blood vessels, liver, kidney, skin, pancreas, intestine, heart and skeletal system. Furthermore, the laminin β2 chain was present in the basement membrane zones of the brain, ganglia, skin, heart and skeletal system. The findings of this study support and expand upon the theory that these two laminin chains are important during human development.  相似文献   

9.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

10.

Objective

Human myocardium has a complex and anisotropic 3D fiber pattern. It remains unknown, however, when in fetal life this anisotropic pattern develops and whether the human heart is structurally fully mature at birth. We aimed here to use diffusion tensor MRI (DTI) tractography to characterize the evolution of fiber architecture in the developing human fetal heart.

Methods

Human fetal hearts (n = 5) between 10–19 weeks of gestation were studied. The heart from a 6-day old neonate and an adult human heart served as controls. The degree of myocardial anisotropy was measured by calculating the fractional anisotropy (FA) index. In addition, fiber tracts were created by numerically integrating the primary eigenvector field in the heart into coherent streamlines.

Results

At 10–14 weeks the fetal hearts were highly isotropic and few tracts could be resolved. Between 14–19 weeks the anisotropy seen in the adult heart began to develop. Coherent fiber tracts were well resolved by 19 weeks. The 19-week myocardium, however, remained weakly anisotropic with a low FA and no discernable sheet structure.

Conclusions

The human fetal heart remains highly isotropic until 14–19 weeks, at which time cardiomyocytes self-align into coherent tracts. This process lags 2–3 months behind the onset of cardiac contraction, which may be a prerequisite for cardiomyocyte maturation and alignment. No evidence of a connective tissue scaffold guiding this process could be identified by DTI. Maturation of the heart’s sheet structure occurs late in gestation and evolves further after birth.  相似文献   

11.
Abstract. BM-90 is a novel glycoprotein initially isolated from the extracellular matrix of a mouse tumor. We here studied the expression of BM-90 during embryonic development of the mouse heart and compared its expression pattern with that of tenascin and laminin. Distribution was studied by immunofluorescence using antibodies specifically raised against mouse BM-90, laminin and tenascin. Some expression of BM-90 was seen in myocardial basement membranes at early developmental stages, but expression abruptly decreased from these sites at day 12 of embryogenesis. Laminin B chains were also found in the muscle basement membranes early but did not decrease with advancing development. The most striking observation was the markedly enriched expression of BM-90 in the endocardial cushion tissue (ECT). The ECT is derived from mesenchymal cells converted from endothelium and they will form the cardiac valves and septa. In the ECT, BM-90 showed considerable co-distribution with tenascin, but tenascin expression was more focal and did not mark all areas of the ECT. Northern blot data show that BM-90 and tenascin were produced by the developing heart. With antibodies detecting A, B1 and B2 chains of mouse laminin, no immunoreactivity was seen in the ECT. Our data thus show clear-cut differences in the molecular composition of the ECT and muscle basement membranes in the developing heart. The focal expression of BM-90 in the ECT suggests that BM-90 could be involved in epithelial-mesenchymal transitions.  相似文献   

12.
The heart-forming regions of the early embryo are composed of splanchnic mesoderm, endoderm, and the associated ECM. The ECM of the heart-forming regions in stage 7-9 chicken embryos was examined using immunofluorescence. Affinity purified antibodies to chicken collagens type I and IV, chicken fibronectin, and mouse laminin were used as probes. We report that (1) the basement membrane of the endoderm contains immunoreactive laminin and collagen IV; (2) the nascent basement membrane of the heart splanchnic mesoderm contains immunoreactive laminin, but not type IV collagen, and (3) the prominent ECM between the splanchnic mesoderm and the endoderm (the primitive-heart ECM) contains collagen IV, collagen I, fibronectin, but not laminin. In addition, we describe microscopic observations on the spatial relationship of cardiogenic cells to the primitive-heart ECM and the endodermal basement membrane.  相似文献   

13.
Immunohistochemical distribution of laminin gamma2 chain, a subunit of the basement membrane protein laminin-5, was examined in 19 cases of human embryos and foetuses ranging from 4 to 25 weeks of gestation. Laminin gamma2 was first detected in the basement membranes underlying ectodermal epithelial tissues, such as the skin and tooth, as early as 5-6 weeks of gestation. Between 6-7 and 12-13 weeks, laminin gamma2 was detected in the basement membranes of various endodermal epithelial tissues, such as the bronchus, oesophagus, stomach, intestines, urinary bladder, gallbladder and hepatopancreatic duct. The deposition of laminin gamma2 in basement membrane was associated with the process of morphogenesis. In the small intestine, laminin gamma2 first appeared in the basement membrane of the primitive short villi, and its level gradually increased in the villus region but decreased in the cryptic region during the maturation of the organ. In addition, non-basement membrane immunoreactivity for laminin gamma2 was detected in some mesoderm-derived tissues, such as the cartilage and skeletal and smooth muscle fibres. These results suggest a common role of laminin-5 and some specific roles of its gamma2 chain in the morphogenesis of human tissues.  相似文献   

14.
Immunohistochemical distribution of laminin γ 2 chain, a subunit of the basement membrane protein laminin-5, was examined in 19 cases of human embryos and foetuses ranging from 4 to 25 weeks of gestation. Laminin γ 2 was first detected in the basement membranes underlying ectodermal epithelial tissues, such as the skin and tooth, as early as 5–6 weeks of gestation. Between 6–7 and 12–13 weeks, laminin γ 2 was detected in the basement membranes of various endodermal epithelial tissues, such as the bronchus, oesophagus, stomach, intestines, urinary bladder, gallbladder and hepatopancreatic duct. The deposition of laminin γ 2 in basement membrane was associated with the process of morphogenesis. In the small intestine, laminin γ 2 first appeared in the basement membrane of the primitive short villi, and its level gradually increased in the villus region but decreased in the cryptic region during the maturation of the organ. In addition, non-basement membrane immunoreactivity for laminin γ 2 was detected in some mesoderm-derived tissues, such as the cartilage and skeletal and smooth muscle fibres. These results suggest a common role of laminin-5 and some specific roles of its γ 2 chain in the morphogenesis of human tissues.  相似文献   

15.
Rat parietal yolk sacs (PYS) at gestational ages 7.5, 9.5, 11.5, 13.5, 14.5, and 16.5 d were reacted with antibodies against laminin or plasma fibronectin. At all times studied, laminin consistently gave a positive reaction with Reichert's membrane and with the cytoplasm of PYS cells. In contrast, fibronectin gave a negative reaction with Reichert's membrane at day 7.5, was weakly positive at day 9.5, and from then on was increasingly positive with maximum reactivity at 14.5 d. By electron microscopic immunohistochemistry, antilaminin reacted strongly with 14.5-d Reichert's membrane and with the contents of the rough endoplasmic reticulum RER cisternae of the PYS cells. Antifibronectin had some spotty reactivity with Reichert's membrane, but the cytoplasm of the PYS cells was negative. The contents of the vitelline vessels and the interface between trophoblast and Reichert's membrane were strongly positive. Metabolic labeling of PYS cells in organ culture clearly demonstrated the presence of laminin, type IV procollagen, and entactin both in the medium and in tissues, but fibronectin was absent. No component in the medium bound to gelatin-Sepharose columns. These studies demonstrate that PYS cells, which actively synthesize and secrete basement membrane components, do not synthesize any detectable fibronectin. Furthermore, the anti-fibronectin staining pattern in the vitelline vessels and trophoblast-Reichert's membrane interface strongly suggests that the fibronectin present in Reichert's membrane is derived from the maternal circulation and is merely "trapped" in the membrane.  相似文献   

16.
Various extracellular-matrix proteins were detected by indirect immunofluorescence in rat intestine at various stages of development ranging from 14 days of gestation to the adult stage. At the earliest stage studied, laminin, nidogen and type-IV collagen were present at the epithelial/mesenchymal interface, whereas fibronectin and type-III procollagen were found throughout the whole mesenchyme. We were able to relate some changes in the staining patterns of extracellular-matrix proteins to morphogenetic processes. As early as 15 days of gestation, i.e. before villus formation, modifications in the distribution or in the staining intensity of all of the antigens within the mesenchyme paralleled the orientation and segregation of mesenchymal cells in the region surrounding the basal membrane and in the presumptive peripheral muscular layers. During villus outgrowth, the transient disappearance of fibronectin and particularly type-III procollagen from the top of the protruding villus core was evident. During the perinatal period, i.e. when crypts develop, the linear staining for the basal-membrane proteins became restricted to the base of the villi, their labelling along the remaining portion of the villi being more irregular. In mature rat intestine, no major modifications in matrix proteins along the crypt-villus axis in relation to epithelial differentiation were found, except that the labelling for fibronectin and type-III procollagen, which are at this stage more closely related to the basement membrane, was less pronounced in the upper part of villi.  相似文献   

17.
Summary The distribution of fibronectin in the human placenta was studied by the aid of the immunoperoxidase technique using specific antibodies against it. In the early chorionic tissue, fibronectin was distributed along the trophoblastic basement membrane, on the wall of fetal blood vessels, in the counective tissue core, and in the cytotrophoblastic cell columns. In the term placenta, this glycoprotein was detected mainly on the fetal blood vessels and less intensely in the stroma, but not along the trophoblastic basement membrane. Endothelial cells of the blood vessels, fibroblastic cells in the stroma, and unidentified cells in the cytotrophoblastic cell columns were immunostained positively for fibronectin. These data suggest that fibronectin of the placenta is produced locally and retained in the tissue, if not all.  相似文献   

18.
Vascular basement membrane contains laminin, fibronectin, proteoglycan and collagens. These molecules have been identified in various tissues by immunolabeling methods and biochemical analyses. We have previously localized laminin, fibronectin and type IV collagen to the basement membrane of rat retinal vessels at the ultrastructural level using an immunoperoxidase method. In this study, we use an immunogold method to re-examine the distribution of these molecules and also to study the localization of heparan sulfate proteoglycan and types I, III and V collagen in the retinal capillary basement membrane. Gold labeling for laminin, type IV collagen and proteoglycan were found diffusely on the basement membrane of the endothelium and pericyte, while that for fibronectin and type V collagen was spotty and variable and that for types I and III collagen was negligible. The segment of basement membrane between the endothelial cell and pericyte appeared less reactive to anti-laminin and anti-type IV collagen than the membrane between the pericyte and perivascular neuroretina. The immunogold method may be useful in quantitative studies of thickened basement membranes under abnormal conditions.  相似文献   

19.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

20.
Fibronectin and laminin are two extracellular glycoproteins which are involved in various processes of cellular development and differentiation. The present investigation describes changes in their distribution during regeneration of the newt forelimb, as determined by indirect immunofluorescence. The distribution of fibronectin and laminin was similar in normal limb tissue components. These glycoproteins were localized in the pericellular region of the myofibers corresponding to its basement membrane; the perineurium and endoneurium of the nerves; and the basement membranes of blood vessels, skin epithelium, and dermal glands. The cytoplasm of myofibers, axons, skin epithelium, and bone matrix lacked fluorescence for both glycoproteins. After limb amputation in the regenerating blastema, extensive presence of fibronectin, but not laminin, was seen in and around the undifferentiated blastemal cells. Increased fluorescence for fibronectin was also seen during blastema growth, blastemal cell aggregation, and early stages of redifferentiation. As redifferentiation continued, staining for fibronectin slowly disappeared from the cartilage matrix and the myoblast fusion zone. Laminin was first observed around the regenerated myotubes; this was followed by the appearance of fibronectin suggesting a sequential formation of these two components of the new myotube basement membrane. In the regenerated limb, the distribution of laminin and fibronectin was similar to that seen in normal limb. Based on the distribution pattern of these glycoproteins, it is concluded that fibronectin may play an important role in blastemal cell aggregation, cell alignment, and initiation of redifferentiation. After redifferentiation, both laminin and fibronectin may be important in the determination of the architecture of the regenerated limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号