首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Most individuals infected with human immunodeficiency virus type 1 (HIV-1) initially harbor macrophage-tropic, non-syncytium-inducing (M-tropic, NSI) viruses that may evolve into T-cell-tropic, syncytium-inducing viruses (T-tropic, SI) after several years. The reasons for the more efficient transmission of M-tropic, NSI viruses and the slow evolution of T-tropic, SI viruses remain unclear, although they may be linked to expression of appropriate chemokine coreceptors for virus entry. We have examined plasma viral RNA levels and the extent of CD4+ T-cell depletion in SCID mice reconstituted with human peripheral blood leukocytes following infection with M-tropic, dual-tropic, or T-tropic HIV-1 isolates. The cell tropism was found to determine the course of viremia, with M-tropic viruses producing sustained high viral RNA levels and sparing some CD4+ T cells, dual-tropic viruses producing a transient and lower viral RNA spike and extremely rapid depletion of CD4+ T cells, and T-tropic viruses causing similarly lower viral RNA levels and rapid-intermediate rates of CD4+ T-cell depletion. A single amino acid change in the V3 region of gp120 was sufficient to cause one isolate to switch from M-tropic to dual-tropic and acquire the ability to rapidly deplete all CD4+ T cells.The envelope gene of human immunodeficiency virus type 1 (HIV-1) determines the cell tropism of the virus (11, 32, 47, 62), the use of chemokine receptors as cofactors for viral entry (4, 17), and the ability of the virus to induce syncytia in infected cells (55, 60). Cell tropism is closely linked to but probably not exclusively determined by the ability of different HIV-1 envelopes to bind CD4 and the CC or the CXC chemokine receptors and initiate viral fusion with the target cell. Macrophage-tropic (M-tropic) viruses infect primary cultures of macrophages and CD4+ T cells and use CCR5 as the preferred coreceptor (2, 5, 15, 23, 26, 31). T-cell-tropic (T-tropic) viruses can infect primary cultures of CD4+ T cells and established T-cell lines, but not primary macrophages. T-tropic viruses use CXCR4 as a coreceptor for viral entry (27). Dual-tropic viruses have both of these properties and can use either CCR5 or CXCR4 (and infrequently other chemokine receptors [25]) for viral entry (24, 37, 57). M-tropic viruses are most frequently transmitted during primary infection of humans and persist throughout the duration of the infection (63). Many, but not all, infected individuals show an evolution of virus cell tropism from M-tropic to dual-tropic and finally to T-tropic with increasing time after infection (21, 38, 57). Increases in replicative capacity of viruses from patients with long-term infection have also been noted (22), and the switch to the syncytium-inducing (SI) phenotype in T-tropic or dual-tropic isolates is associated with more rapid disease progression (10, 20, 60). Primary infection with dual-tropic or T-tropic HIV, although infrequent, often leads to rapid disease progression (16, 51). The viral and host factors that determine the higher transmission rate of M-tropic HIV-1 and the slow evolution of dual- or T-tropic variants remain to be elucidated (4).These observations suggest that infection with T-tropic, SI virus isolates in animal model systems with SCID mice grafted with human lymphoid cells or tissue should lead to a rapid course of disease (1, 8, 4446). While some studies in SCID mice grafted with fetal thymus and liver are in agreement with this concept (33, 34), our previous studies with the human peripheral blood leukocyte-SCID (hu-PBL-SCID) mouse model have shown that infection with M-tropic isolates (e.g., SF162) causes more rapid CD4+ T-cell depletion than infection with T-tropic, SI isolates (e.g., SF33), despite similar proviral copy numbers, and that this property mapped to envelope (28, 41, 43). However, the dual-tropic 89.6 isolate (19) caused extremely rapid CD4+ T-cell depletion in infected hu-PBL-SCID mice that was associated with an early and transient increase in HIV-1 plasma viral RNA (29). The relationship between cell tropism of the virus isolate and the pattern of disease in hu-PBL-SCID mice is thus uncertain. We have extended these studies by determining the kinetics of HIV-1 RNA levels in serial plasma samples of hu-PBL-SCID mice infected with primary patient isolates or laboratory stocks that differ in cell tropism and SI properties. The results showed significant differences in the kinetics of HIV-1 replication and CD4+ T-cell depletion that are determined by the cell tropism of the virus isolate.  相似文献   

3.
4.
5.
6.
7.
8.
Cytomegalovirus (CMV) infection during the transient immunodeficiency after bone marrow transplantation (BMT) develops into disease unless antiviral CD8 T cells are restored in due course. Histoincompatibility between donor and recipient is associated with increased risk. Complications may include a rejection response against the foreign major histocompatibility complex (MHC) antigens and a lack of antiviral control resulting from a misfit between donor-derived T cells and the antigenic viral peptides presented in recipient tissues. Here we have established a murine model of CMV disease after experimental BMT performed across a single MHC class I disparity. Specifically, BALB/c bone marrow cells expressing the prevailing antigen-presenting molecule Ld were transplanted into the Ld gene deletion mutant BALB/c-H-2dm2, an experimental setting that entails a selective risk of host-versus-graft but not graft-versus-host response. The reconstituted T-cell population proved to be chimeric in that it consisted of Ld-positive donor-derived and Ld-negative recipient-derived cells. Pulmonary infiltrates did not include cytolytic T cells directed against Ld. This finding implies that the infection did not trigger a host-versus-graft response. Notably, upon adoptive transfer, donor-derived CD8 T cells preferentially protected tissues of donor genotype, whereas recipient-derived CD8 T cells protected tissues of either genotype. We infer from these data that the focus on immunodominant antigens presented by Ld within the donor cell population distracted the donor T cells from protecting recipient tissues and that protection in the chimeras was therefore primarily based on recipient T cells. As a consequence, T-cell chimerism after BMT should give a positive prognosis with respect to control of CMV.Cytomegaloviruses (CMV) are kept under tight immune control (for reviews, see references 22 and 23). As a consequence, acute CMV infection is resolved rapidly and does not result in disease unless the host is immunologically immature or immunocompromised. Bone marrow (BM) transplantation (BMT) as a therapy of hematological malignancies is associated with a transient immunodeficiency. Accordingly, during the period of immunocompromise, transmission of donor-type CMV with the transplant as well as recurrence of CMV from latency established within the organs of the transplantation recipient both entail a risk for destructive virus replication in tissues resulting in multiple-organ CMV disease (16). In BMT recipients, CMV-induced interstitial pneumonia is a frequent and endangering manifestation of CMV disease (11, 27). However, CMV infection does not inevitably result in fatal disease. It appears that CD8 T-cell reconstitution is the decisive parameter in the control of CMV after BMT. Clinical data have shown that both efficient reconstitution of CD8 T cells (41) and supplementation of antiviral CD8 T cells by preemptive cytoimmunotherapy with T-cell lines (42, 50) correlate with a reduced risk of human CMV disease, whereas combined in vivo-ex vivo T-cell depletion, intended as a prophylaxis against graft-versus-host (GvH) disease, accidentally resulted in an increased incidence of CMV infections in BMT patients (14). Aspects of these clinical problems can be approached experimentally in a murine model of BMT and concurrent infection with murine CMV (for an overview, see reference 35). Specifically, depletion of CD8 T cells, but not of CD4 T cells, performed in vivo during the phase of reconstitution after BMT abolished the development of protective antiviral immunity, with an inevitably lethal outcome (34, 47) resulting from multiple-organ pathology (34), including BM aplasia (29, 30). Likewise, an insufficient endogenous reconstitution was successfully supplemented by experimental adoptive cytoimmunotherapy with antiviral CD8 T cells. Again, CD4 T cells were not effective (36, 37, 39, 47). Altogether, clinical data on human CMV infection and experimental data from the murine model have so far been concordant and have identified CD8 T cells as the principal effectors controlling CMV infections after BMT.These findings imply that all conditions which lower the efficacy of CD8 T-cell reconstitution will increase the risk for progression of asymptomatic CMV infection to fatal CMV disease. Histoincompatibility between graft and recipient is a factor likely to negatively influence the restoration of antiviral immunity. Accordingly, even though cases of severe human CMV disease have been reported also after autologous BMT (27, 40), the incidence of CMV-related complications is generally higher after histoincompatible BMT (51). In clinical BMT, donor and recipient are usually matched in major histocompatibility complex (MHC) class II molecules, whereas differences in minor histocompatibility loci and in MHC class I loci are tolerated if unavoidable. Complications caused in the CMV-infected recipient by histoincompatibility may include (i) an impaired engraftment of transplanted cells in the recipient BM stroma, (ii) an immunological GvH response as well as a host-versus-graft (HvG) response directed against the foreign minor or major histocompatibility molecules, and (iii) a lack of antiviral T-cell control resulting from an inappropriate repertoire of viral antigenic peptides presented by infected tissue cells of the transplantation recipient.In a first attempt to dissect these possibilities, we have established a murine model of experimental BMT performed across a single MHC class I disparity, namely, the presence and absence of the Ld molecule in BALB/c mice (MHC class I molecules Kd, Dd, and Ld) and the Ld gene deletion mutant BALB/c-H-2dm2 (44), respectively. Depending on the choice of donor and recipient for the BMT, immunogenetical GvH and HvG conditions can be studied separately (35). Work presented herein focuses on the HvG setting with BALB/c as the donor strain and the mutant as the recipient. Hence, after incomplete depletion of hematopoietic cells of the recipients, this model entails a risk for graft rejection caused by a recipient response directed against the donor MHC class I molecule Ld. In addition, presentation of viral peptides by Ld, including the immunodominant IE1 nonapeptide of murine CMV (18, 38), is confined to donor-derived hematopoietic cells and their progeny, whereas the parenchymal and stromal sites of cytocidal infection (34) lack Ld as the prevailing peptide presenter. The aim of the study was to investigate the influence of this particular MHC class I disparity on the control of murine CMV after BMT.  相似文献   

9.
10.
11.
12.
Herpes simplex virus (HSV) inhibits major histocompatibility complex (MHC) class I expression in infected cells and does so much more efficiently in human cells than in murine cells. Given this difference, if MHC class I-restricted T cells do not play an important role in protection of mice from HSV, an important role for these cells in humans would be unlikely. However, the contribution of MHC class I-restricted T cells to the control of HSV infection in mice remains unclear. Further, the mechanisms by which these cells may act to control infection, particularly in the nervous system, are not well understood, though a role for gamma interferon (IFN-γ) has been proposed. To address the roles of MHC class I and of IFN-γ, C57BL/6 mice deficient in MHC class I expression (β2 microglobulin knockout [β2KO] mice), in IFN-γ expression (IFN-γKO mice), or in both (IFN-γKO/β2KO mice) were infected with HSV by footpad inoculation. β2KO mice were markedly compromised in their ability to control infection, as indicated by increased lethality and higher concentrations of virus in the feet and spinal ganglia. In contrast, IFN-γ appeared to play at most a limited role in viral clearance. The results suggest that MHC class I-restricted T cells play an important role in protection of mice against neuroinvasive HSV infection and do so largely by mechanisms other than the production of IFN-γ.

Two gene products of herpes simplex virus (HSV) block presentation of viral proteins by class I major histocompatibility complex (MHC) molecules: the viral host shutoff protein (vhs), which is present in the viral particle, and the immediate-early protein ICP47 (1, 14, 41, 42). Through the sequential action of these proteins, antigen presentation by MHC class I is inhibited early in the viral replication cycle. ICP47 binds to human transporter associated with antigen-processing proteins (TAP), thereby inhibiting peptide loading on MHC class I and recognition by HSV-specific, MHC class I-restricted, CD8+ T cells (1, 14, 42, 43). This effect is greatest in nonhematopoietic cells in which the abundance of MHC class I and TAP are lower than in antigen-presenting cells (41). As a consequence, HSV is more likely to impair recognition of infected target cells in the tissues than to block the generation of antigen-specific CD8+ T cells. Consistent with this, recent studies indicate that HSV antigen-specific CD8+ cytotoxic-T-lymphocyte (CTL) precursors can be readily detected in the blood and cutaneous lesions of HSV-infected individuals (16, 31, 32). However, NK cells and HSV antigen-specific CD4+ T cells are detected earlier than antigen-specific CD8+ T cells in lesions of humans with recurrent HSV-2 disease (16). This finding has led to the proposal that gamma interferon (IFN-γ) produced by infiltrating NK and CD4+ T cells overrides the inhibitory effects of HSV on TAP function and MHC class I expression (22, 41), thereby allowing the eradication of virus by CD8+ T cells, whose numbers increase in lesions around the time of viral clearance (16, 31). In patients with AIDS, a lower frequency in the blood of HSV antigen-specific CD8+ CTL precursors is associated with more frequent and severe recurrences of genital disease (32). These correlative data suggest that CD8+ T cells may play an important role in the clearance of HSV in humans, at least from mucocutaneous lesions.ICP47 inhibits murine TAP poorly (1, 42), which may explain the greater ease with which anti-HSV CD8+ CTLs have been detected in mice than in humans (3, 8, 28, 34, 35). Despite the weak interaction of ICP47 with murine TAP, results of a recent study (12) suggested that ICP47 impairs CD8+ T-cell-dependent viral clearance from the nervous system: CD8+ T cells protected susceptible BALB/c or A/J mice from lethal, nervous system infection with an HSV mutant lacking ICP47 but did not appear to protect against infection with wild-type HSV or to contribute to clearance of either virus from the eye. These findings are consistent with data suggesting that CD8+ T cells limit persistence of HSV in the spinal ganglia and decrease spread to the central nervous system (35, 36). However, other studies have concluded that CD4+ T cells but not CD8+ T cells play the critical role in viral clearance and protection from lethal primary infection with wild-type HSV (20, 23, 24) or that either CD4+ or CD8+ T cells are sufficient for protection (26, 37). Since the effects of ICP47 are likely to be greater in humans than in mice, if MHC class I-restricted CD8+ T cells do not play an important role in protection of mice from lethal, neuroinvasive infection due to wild-type HSV, an important role in humans would be unlikely.The mechanisms by which T cells may limit the spread of infection in the nervous system are not clearly understood. Studies by Simmons and colleagues suggested that CD8+ T cells may lyse infected Schwann cells or satellite cells but that they probably do not lyse infected neurons (31, 32). They and others have proposed that CD8+ T cells protect neurons through the production of cytokines, in particular IFN-γ (35, 36). IFN-γ contributes to the clearance of HSV from mucocutaneous sites (4, 24, 25, 37, 44). However, the role of IFN-γ in protection from lethal, neuroinvasive infection is uncertain and may vary with the strain of mice, method used to inhibit IFN-γ function, and route of inoculation (4, 5, 24, 37, 44). IFN-γ is produced in the ganglia of mice with acute or latent HSV infection (5, 13, 19). Both CD4+ and CD8+ T cells (and NK cells) produce IFN-γ, but CD4+ T cells appear to be the predominant source of IFN-γ following intravaginal infection with HSV (24, 25). Thus, it is possible that the disparity in results regarding the relative importance of CD4+ and CD8+ T cells in protection from lethal, neuroinvasive HSV infection reflects their redundant roles in production of this cytokine or that IFN-γ and CD8+ T cells contribute independently to control of infection in the nervous system.To address in parallel the contributions of MHC class I-restricted T cells and of IFN-γ to protection of mice from HSV, MHC class I and CD8+ T-cell-deficient β2 microglobulin knockout (β2KO) mice, IFN-γ knockout (IFN-γKO) mice, and mice deficient in both MHC class I and IFN-γ expression (IFN-γKO/β2KO) were studied. The results indicated that loss of MHC class I expression in β2KO mice substantially increased their susceptibility to HSV, whereas the loss of IFN-γ expression had a much more limited effect. These findings indicate that MHC class I-restricted T cells play an important role in protection against neuroinvasive HSV infection in mice and that they do so largely by mechanisms other than the production of IFN-γ. Though MHC class I expression is more severely impaired in β2KO mice than in human cells infected with wild-type HSV, these findings support the notion that inhibition of MHC class I expression is an important factor in the virulence of this virus.  相似文献   

13.
14.
15.
The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a type I anchored integral membrane phosphoprotein with two independent functions. First, it regulates virus release from a post-endoplasmic reticulum (ER) compartment by an ion channel activity mediated by its transmembrane anchor. Second, it induces the selective down regulation of host cell receptor proteins (CD4 and major histocompatibility complex class I molecules) in a process involving its phosphorylated cytoplasmic tail. In the present work, we show that the Vpu-induced proteolysis of nascent CD4 can be completely blocked by peptide aldehydes that act as competitive inhibitors of proteasome function and also by lactacystin, which blocks proteasome activity by covalently binding to the catalytic β subunits of proteasomes. The sensitivity of Vpu-induced CD4 degradation to proteasome inhibitors paralleled the inhibition of proteasome degradation of a model ubiquitinated substrate. Characterization of CD4-associated oligosaccharides indicated that CD4 rescued from Vpu-induced degradation by proteasome inhibitors is exported from the ER to the Golgi complex. This finding suggests that retranslocation of CD4 from the ER to the cytosol may be coupled to its proteasomal degradation. CD4 degradation mediated by Vpu does not require the ER chaperone calnexin and is dependent on an intact ubiquitin-conjugating system. This was demonstrated by inhibition of CD4 degradation (i) in cells expressing a thermally inactivated form of the ubiquitin-activating enzyme E1 or (ii) following expression of a mutant form of ubiquitin (Lys48 mutated to Arg48) known to compromise ubiquitin targeting by interfering with the formation of polyubiquitin complexes. CD4 degradation was also prevented by altering the four Lys residues in its cytosolic domain to Arg, suggesting a role for ubiquitination of one or more of these residues in the process of degradation. The results clearly demonstrate a role for the cytosolic ubiquitin-proteasome pathway in the process of Vpu-induced CD4 degradation. In contrast to other viral proteins (human cytomegalovirus US2 and US11), however, whose translocation of host ER molecules into the cytosol occurs in the presence of proteasome inhibitors, Vpu-targeted CD4 remains in the ER in a transport-competent form when proteasome activity is blocked.

The human immunodeficiency virus type 1 (HIV-1)-specific accessory protein Vpu performs two distinct functions in the viral life cycle (11, 12, 29, 34, 46, 47, 5052; reviewed in references 31 and 55): enhancement of virus particle release from the cell surface, and the selective induction of proteolysis of newly synthesized membrane proteins. Known targets for Vpu include the primary virus receptor CD4 (63, 64) and major histocompatibility complex (MHC) class I molecules (28). Vpu is an oligomeric class I integral membrane phosphoprotein (35, 48, 49) with a structurally and functionally defined domain architecture: an N-terminal transmembrane anchor and C-terminal cytoplasmic tail (20, 34, 45, 47, 50, 65). Vpu-induced degradation of endoplasmic reticulum (ER) membrane proteins involves the phosphorylated cytoplasmic tail of the protein (50), whereas the virion release function is mediated by a cation-selective ion channel activity associated with the membrane anchor (19, 31, 45, 47).CD4 is a 55-kDa class I integral membrane glycoprotein that serves as the primary coreceptor for HIV entry into cells. CD4 consists of a large lumenal domain, a transmembrane peptide, and a 38-residue cytoplasmic tail. It is expressed on the surface of a subset of T lymphocytes that recognize MHC class II-associated peptides, and it plays a pivotal role in the development and maintenance of the immune system (reviewed in reference 30). Down regulation of CD4 in HIV-1-infected cells is mediated through several independent mechanisms (reviewed in references 5 and 55): intracellular complex formation of CD4 with the HIV envelope protein gp160 (8, 14), endocytosis of cell surface CD4 induced by the HIV-1 nef gene product (1, 2), and ER degradation induced by the HIV-1 vpu gene product (63, 64).Vpu-induced degradation of CD4 is an example of ER-associated protein degradation (ERAD). ERAD is a common outcome when proteins in the secretory pathway are unable to acquire their native structure (4). Although it was thought that ERAD occurs exclusively inside membrane vesicles of the ER or other related secretory compartments, this has gained little direct experimental support. Indeed, there are several recent reports that ERAD may actually represent export of the target protein to the cytosol, where it is degraded by cytosolic proteases. It was found that in yeast, a secreted protein, prepro-α-factor (pαF), is exported from microsomes and degraded in the cytosol in a proteasome-dependent manner (36). This process was dependent on the presence of calnexin, an ER-resident molecular chaperone that interacts with N-linked oligosaccharides containing terminal glucose residues (3). In mammalian cells, two human cytomegalovirus (HCMV) proteins, US2 and US11, were found to cause the retranslocation of MHC class I molecules from the ER to the cytosol, where they are destroyed by proteasomes (61, 62). In the case of US2, class I molecules were found to associate with a protein (Sec61) present in the channel normally used to translocate newly synthesized proteins into the ER (termed the translocon), leading to the suggestion that the ERAD substrates are delivered to the cytosol by retrograde transport through the Sec61-containing pore (61). Fujita et al. (24) reported that, similar to these findings, the proteasome-specific inhibitor lactacystin (LC) partially blocked CD4 degradation in transfected HeLa cells coexpressing CD4, Vpu, and HIV-1 Env glycoproteins. In the present study, we show that Vpu-induced CD4 degradation can be completely blocked by proteasome inhibitors, does not require the ER chaperone calnexin, but requires the function of the cytosolic polyubiquitination machinery which apparently targets potential ubiquitination sites within the CD4 cytoplasmic tail. Our findings point to differences between the mechanism of Vpu-mediated CD4 degradation and ERAD processes induced by the HCMV proteins US2 and US11 (61, 62).  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号