首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis of aconitase in Bacillus subtilis wild-type and different citric acid cycle mutants has been studied and the influence of various growth conditions examined. Aconitase is induced by citrate and precursors of citrate and repressed by glutamate. Induction and repression counteract each other, and at equimolar concentrations of citrate and glutamate, aconitase synthesis is unaffected. Induction by citrate can partly overcome catabolite repression of aconitase. Isocitrate dehydrogenase show endogenous induction of aconitase due to citrate accumulation. Leaky mutants defective in citrate synthase and aconitase cannot be induced by citrate, which indicates that they carry a regulatory mutation. The complex regulation of aconitase is discussed with reference to the participation of this enzyme in glutamate biosynthesis and energy metabolism.  相似文献   

2.
3.
The regulation of enzyme synthesis has changed in Bacillus subtilis pleiotropic mutant lacking transketolase (tkt). The tkt mutant is hypersensitive to d-glucose repression of the synthesis of d-mannitol catabolic enzymes, such as d-mannitol-1-phosphate dehydrogenase and d-mannitol transport system. d-Gluconate, d-xylose and l-arabinose are also effectors for repression in the tkt mutant. In contrast, the synthesis of sorbitol catabolic enzymes, such as sorbitol permease and sorbitol dehydrogenase, are almost insensitive to d-glucose repression. These changes in the regulation of enzyme synthesis seem to be related to some defect in the cell surface structure of the tkt mutant by which other pleiotropic properties are also generated.  相似文献   

4.
5.
Med was found as a positive regulator for comK, a master regulator for late competence genes. It was found by Western analysis that the ComK level was decreased in a med mutant. Experiments using an alkaline phosphatase fusion with Med and Western analysis of Med were done because a putative lipo-modification signal is found at the N-terminus of Med. The results obtained are consistent with the localization of Med at the cell surface. An implication of the cell-surface localization of Med is discussed in terms of comK regulation.  相似文献   

6.
Catabolite repression-resistant mutants of Bacillus subtilis.   总被引:3,自引:0,他引:3  
Mutants of Bacillus subtilis that are able to sporulate under the condition of catabolite repression were isolated by a simple selection technique. The mutants used in the present study were able to grow normally on minimal medium with ammonium sulphate as the nitrogen source and glucose as the carbon source. Studies carried out with these mutants show that there is no close relation between catabolite repression of an inducible enzyme, acetoin dehydrogenase, and that of sporulation. Certain mutants are able to sporulate in the presence of all the carbon sources tested but some mutants are resistant only to the carbon source used in isolation. It is suggested that several metabolic steps may be affected in catabolite repression of sporulation.  相似文献   

7.
8.
9.
10.
Repression of sporulation in Bacillus subtilis by L-malate.   总被引:6,自引:3,他引:3       下载免费PDF全文
L-Malate repressed sporulation in the wild-type strain of Bacillus subtilis. When 75 mM L-malate was added to the growth medium at the time of inoculation, the appearance of heat-resistant spores was delayed 6 to 8 h. The synthesis of extracellular serine protease, alkaline phosphatase, glucose dehydrogenase, and dipicolinic acid was similarly delayed. Sporulation was not repressed when malate was added to the culture at t4 or later. A mutant was selected for ability to sporulate in the presence of malate. This strain could also sporulate in the presence of glucose. The malate-resistant mutant grew poorly with malate as sole carbon source, although it possessed an intact citric acid cycle, and it showed increased levels of malic enzyme. This indicates a defect in the metabolism of malate in the mutant. A mutant lacking malate dehydrogenase activity was also able to sporulate in the presence of malate. A model for the regulation of sporulation by malate is presented and discussed. Citric acid cycle intermediates other than malate did not affect sporulation. In contrast to previous results, sporulation of certain citric acid cycle mutants could be greatly increased or completely restored by the addition of intermediates after the enzymatic block. The results indicate that the failure of citric acid cycle mutants to sporulate can be adequately explained by lack of energy and lack of glutamate.  相似文献   

11.
Glutamine, like glucose, repressed sporulation and the synthesis of mycobacillin and dipicolinic acid by Bacillus subtilis , and these syntheses were derepressed by dibutyryl cyclic GMP but not by dibutyryl cyclic AMP. Neither of these dibutyryl cyclic nucleotides affected sporulation or a number of spore-associated parameters in the strain under normal physiological conditions. Mutants insensitive to glutamine repression were indifferent to the addition of either of the dibutyryl cyclic nucleotides both in the presence and in the absence of glutamine. Sporulation resulted from the remission of repression obtained under the catabolically active state.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Acetoin dehydrogenase can be catabolite repressed by numerous sources of carbon. The following results point out that the catabolite repression of this enzyme and the inhibition of sporulation are mediated by the same mechanism:
  1. Mutants, able to synthesize acetoin dehydrogenase in the presence of glucose, sporulate in glucose medium at a higher rate than the standard strain.
  2. The catabolite repressing effect of a compound and its ability to inhibit sporulation are in a direct relation to each other.
  3. The limitation of inorganic phosphate in the growth medium, which is known to favour sporulation, counteracts the catabolite repressing effect of glucose.
  相似文献   

19.
Transcription of the Bacillus subtilis spoIIA locus   总被引:15,自引:0,他引:15  
J J Wu  P J Piggot  K M Tatti  C P Moran 《Gene》1991,101(1):113-116
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号