共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Takuya B. Hiyama Takuhiro Ito Hiroaki Imataka Shigeyuki Yokoyama 《Journal of molecular biology》2009,392(4):937-951
Eukaryotic translation initiation factor 2B (eIF2B) is the heteropentameric guanine-nucleotide exchange factor specific for eukaryotic initiation factor 2 (eIF2). Under stressed conditions, guanine-nucleotide exchange is strongly inhibited by the tight binding of phosphorylated eIF2 to eIF2B. Here, we report the crystal structure of the α subunit of human eIF2B at 2.65 Å resolution. The eIF2Bα structure consists of the N-terminal α-helical domain and the C-terminal Rossmann-fold-like domain. A positively charged pocket, whose entrance is about 15-17 Å in diameter, resides at the boundary between the two domains. A sulfate ion is located at the bottom of the pocket (about 16 Å in depth). The residues comprising the sulfate-ion-binding site are strictly conserved in eIF2Bα. Since this deep, wide pocket with the sulfate-ion-binding site is not conserved in distant homologues, including 5-methylthioribose 1-phosphate isomerases, these characteristics may be distinctive of eIF2Bα. Interestingly, the yeast eIF2Bα missense mutations that reduce the eIF2B sensitivity to phosphorylated eIF2 are mapped on the other side of the pocket. One of the three human eIF2Bα missense mutations that induce the lethal brain disorder vanishing white matter or childhood ataxia with central nervous system hypomyelination is mapped inside the pocket. The β and δ subunits of eIF2B are homologous to eIF2Bα and may have tertiary structures similar to the present eIF2Bα structure. The sulfate-ion-binding residues of eIF2Bα are well conserved in eIF2Bβ/δ. The abovementioned yeast and human missense mutations of eIF2Bβ/δ were also mapped on the eIF2Bα structure, which revealed that the human mutations are clustered on the same side as the pocket, while the yeast mutations reside on the opposite side. As most of the mutated residues are exposed on the surface of the eIF2B subunit structure, these exposed residues are likely to be involved in either the subunit interactions or the interaction with eIF2. 相似文献
4.
Evolution of the Integrin α and β Protein Families 总被引:4,自引:0,他引:4
Hughes AL 《Journal of molecular evolution》2001,52(1):63-72
A phylogenetic analysis of vertebrate and invertebrate α integrins supported the hypothesis that two major families of vertebrate
α integrins originated prior to the divergence of deuterostomes and protostomes. These two families include, respectively,
the αPS1 and αPS2 integrins of Drosophila melanogaster, and each family has duplicated repeatedly in vertebrates but not in Drosophila. In contrast, a third family (including αPS3) has duplicated in Drosophila but is absent from vertebrates. Vertebrate αPS1 and αPS2 family members are found on human chromosomes 2, 12, and 17. Linkage
of these family members may have been conserved since prior to the origin of vertebrates, and the two genes duplicated simultaneously.
A phylogenetic analysis of β integrins did not clearly resolve whether vertebrate β integrin genes duplicated prior to the
origin of vertebrates, although it suggested that at least the gene encoding vertebrate β4 may have done so. In general, the
phylogeny of neither α nor β integrins showed a close correspondence with patterns of α–β heterodimer formation or other functional
characteristics. One major exception to this trend involved αL, αM, αX, and αD, a monophyletic group of immune cell-expressed
α integrins, which share a number of common functional characteristics and have evolved in coordinated fashion with their
β integrin partners.
Received: 22 June 2000 / Accepted: 11 September 2000 相似文献
5.
6.
7.
Kenji Kawabe Katsura Takano Mitsuaki Moriyama Yoichi Nakamura 《Neurochemical research》2018,43(1):32-40
Activation of glial cells has been observed in neurodegenerative diseases including Alzheimer’s disease (AD). Aggregation of amyloid β (Aβ) is profusely observed as characteristic pathology in AD brain. In our previous study using microglial cell line BV-2, tissue-type transglutaminase (TG2) was found to be involved in phagocytosis (Kawabe et al., in Neuroimmunomodulation 22(4):243–249, 2015; Kawabe et al., Neurochem Res 2017). In the present study, we examined whether TG2 and milk fat globule EGF factor 8 protein (MFG-E8), an adaptor protein promotes macrophage to engulf apoptotic cells, were involved in Aβ endocytosis. When the neuronal/glial mixed culture was stimulated freshly prepared Aβ1?42 for 3 days, the incorporation of Aβ was observed by immunofluorescence staining technique in Iba-1-positive microglia. Cystamine, a broad competitive inhibitor of TGs, suppressed it. When aggregated Aβ was added to the mixed culture, the immunoreactivity of MFG-E8 surrounding Aβ was observed, and then followed by microglial endocytosis. Using western blotting technique, MFG-E8 was detected in cell lysate of astrocyte culture, and was also detected in the medium. When microglia culture was incubated with astrocyte conditioned medium, MFG-E8 levels in microglia tended to increase. It is likely that microglia might utilize MFG-E8 released from astrocytes as well as that expressed in themselves in order to endocytose Aβ aggregation. Furthermore, we confirmed that MFG-E8 could bind with TG2 in microglia culture by immunoprecipitate technique. These results suggest that microglia might uptake Aβ as a complex of aggregated Aβ/MFG-E8/TG2. 相似文献
8.
Rocío Navarro-Olmos Laura Kawasaki Lenin Domínguez-Ramírez Laura Ongay-Larios Rosario Pérez-Molina Roberto Coria 《Molecular biology of the cell》2010,21(3):489-498
The Kluyveromyces lactis heterotrimeric G protein is a canonical Gαβγ complex; however, in contrast to Saccharomyces cerevisiae, where the Gγ subunit is essential for mating, disruption of the KlGγ gene yielded cells with almost intact mating capacity. Expression of a nonfarnesylated Gγ, which behaves as a dominant-negative in S. cerevisiae, did not affect mating in wild-type and ΔGγ cells of K. lactis. In contrast to the moderate sterility shown by the single ΔKlGα, the double ΔKlGα ΔKlGγ mutant displayed full sterility. A partial sterile phenotype of the ΔKlGγ mutant was obtained in conditions where the KlGβ subunit interacted defectively with the Gα subunit. The addition of a CCAAX motif to the C-end of KlGβ, partially suppressed the lack of both KlGα and KlGγ subunits. In cells lacking KlGγ, the KlGβ subunit cofractionated with KlGα in the plasma membrane, but in the ΔKlGα ΔKlGγ strain was located in the cytosol. When the KlGβ-KlGα interaction was affected in the ΔKlGγ mutant, most KlGβ fractionated to the cytosol. In contrast to the generic model of G-protein function, the Gβ subunit of K. lactis has the capacity to attach to the membrane and to activate mating effectors in absence of the Gγ subunit. 相似文献
9.
10.
11.
Qing-yun Zou Ying-jie Zhao Chi Zhou Ai-xia Liu Xin-qi Zhong Qin Yan Yan Li Fu-xian Yi Ian M. Bird Jing Zheng 《Journal of cellular physiology》2019,234(7):10184-10195
During pregnancy, a tremendous increase in fetoplacental angiogenesis is associated with elevated blood flow. Aberrant fetoplacental vascular function may lead to pregnancy complications including pre-eclampsia. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are crucial regulators of fetoplacental endothelial function. G protein α subunit 14 (GNA14), a member of Gαq/11 subfamily is involved in mediating hypertensive diseases and tumor vascularization. However, little is known about roles of GNA14 in mediating the FGF2- and VEGFA-induced fetoplacental endothelial function. Using human umbilical vein endothelial cells (HUVECs) cultured under physiological chronic low oxygen (3% O2) as a cell model, we show that transfecting cells with adenovirus carrying GNA14 complementary DNA (cDNA; Ad-GNA14) increases (p < 0.05) protein expression of GNA14. GNA14 overexpression blocks (p < 0.05) FGF2-stimulated endothelial migration, whereas it enhances (p < 0.05) endothelial monolayer integrity (maximum increase of ~35% over the control at 24 hr) in response to FGF2. In contrast, GNA14 overexpression does not significantly alter VEGFA-stimulated cell migration, VEGFA-weakened cell monolayer integrity, and intracellular Ca++ mobilization in response to adenosine triphosphate (ATP), FGF2, and VEGFA. GNA14 overexpression does not alter either FGF2- or VEGFA-induced phosphorylation of ERK1/2. However, GNA14 overexpression time-dependently elevates (p < 0.05) phosphorylation of phospholipase C-β3 (PLCβ3) at S1105 in response to FGF2, but not VEGFA. These data suggest that GNA14 distinctively mediates fetoplacental endothelial cell migration and permeability in response to FGF2 and VEGFA, possibly in part by altering activation of PLCβ3 under physiological chronic low oxygen. 相似文献
12.
Nicolay Ya. Orlov Tatiana G. Orlova Yana K. Reshetnyak Edward A. Burstein Narimichi Kimura 《Journal of biomolecular structure & dynamics》2013,31(4):955-968
Abstract Nucleoside diphosphate (NDP) kinases of mammals are hexamers of two sorts of randomly associated highly homologous subunits of 152 residues each and, therefore exist in cell as NDP kinase isoforms. The catalytic properties and three-dimensional structures of the isoforms are very similar. The physiological meaning of the existence of the isoforms in cells remained unclear, but studying recombinant rat NDP kinases a and β, each containing only one sort of subunits, we discovered that, in contrast to the isoenzyme β, NDP kinase α is able to interact with the complex between bleached rhodopsin and G-protein transducin in retinal rod membranes at lowered pH values (Orlov et al. FEBS Lett. 389, 186–190, 1996). In order to search for possible molecular basis of such differences between these isoenzymes, a detailed comparative study of their intrinsic fluorescence properties in a large range of solvent conditions was performed in this work. The isoenzymes α and β both contain the same three tryptophan (Trp78, 133, 1nd 149) and four tyrosine (Tyr 52, 67, 147, and 151) residues per subunit, but exhibit pronounced differences in their fluorescence properties (both in spectral positions and shape and quantum yield values) and behave differently under pH titration. Whereas NDP kinase a undergoes spectral changes in the pH range 5–7 with the mid-point at 6.2, no unequivocal indication of a structural change of NDP kinase β under pH titration from 9 to 5 was obtained. Since the pH dependencies obtained for fluorescence of isoenzyme α resembles the dependence of its binding to the rhodopsin-transducin complex it was suggested that the differences between the NDP kinase isoenzymes α and β in the pH-induced behavior, revealed by the fluorescence spectroscopy, and the differences in their ability to interact with rhodopsin-transducin complex may have the same physical nature, that would be a physico-chemical reason of possible functional dissimilarity of NDP kinase isoforms in cell. An additional analysis of three-dimensional structure of homologous NDP kinases revealed that the source of the differences in fluorescence properties and pH-titration behavior between the isoenzymes α and β may be due to the difference in their global electrostatic charges, rather than to any structural differences between them at neutral pH. The unusually high positive electrostatic potential at he deeply buried active site Tyr52 makes possible that it exists in deprotonated tyrosinate form at neutral and moderately acidic solution. Such a possibility may account for rather unusual fluorescence properties of NDP kinase α: (i) rather long-wavelength emission of NDP kinase a at ca. 340 nm at pH ca. 8 at extremely low accessibility to external quenchers and, possibly, (ii) an unusually high quantum yield value (ca. 0.42). 相似文献
13.
14.
15.
Ali I. Kaya Alyssa D. Lokits James A. Gilbert Tina M. Iverson Jens Meiler Heidi E. Hamm 《The Journal of biological chemistry》2014,289(35):24475-24487
G protein activation by G protein-coupled receptors is one of the critical steps for many cellular signal transduction pathways. Previously, we and other groups reported that the α5 helix in the G protein α subunit plays a major role during this activation process. However, the precise signaling pathway between the α5 helix and the guanosine diphosphate (GDP) binding pocket remains elusive. Here, using structural, biochemical, and computational techniques, we probed different residues around the α5 helix for their role in signaling. Our data showed that perturbing the Phe-336 residue disturbs hydrophobic interactions with the β2-β3 strands and α1 helix, leading to high basal nucleotide exchange. However, mutations in β strands β5 and β6 do not perturb G protein activation. We have highlighted critical residues that leverage Phe-336 as a relay. Conformational changes are transmitted starting from Phe-336 via β2-β3/α1 to Switch I and the phosphate binding loop, decreasing the stability of the GDP binding pocket and triggering nucleotide release. When the α1 and α5 helices were cross-linked, inhibiting the receptor-mediated displacement of the C-terminal α5 helix, mutation of Phe-336 still leads to high basal exchange rates. This suggests that unlike receptor-mediated activation, helix 5 rotation and translocation are not necessary for GDP release from the α subunit. Rather, destabilization of the backdoor region of the Gα subunit is sufficient for triggering the activation process. 相似文献
16.
Yoshiaki Suwa Jianyou Gu Andrey G. Baranovskiy Nigar D. Babayeva Youri I. Pavlov Tahir H. Tahirov 《The Journal of biological chemistry》2015,290(23):14328-14337
In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å2. Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes. 相似文献
17.
Shigenori Nagatomo Yukifumi Nagai Yayoi Aki Hiroshi Sakurai Kiyohiro Imai Naoki Mizusawa Takashi Ogura Teizo Kitagawa Masako Nagai 《PloS one》2015,10(8)
Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by ‘cooperativity’. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected. To investigate the different roles of the Fe-His(F8) bonds in the α and β subunits, we investigated cavity mutant Hbs in which the Fe-His(F8) in either α or β subunits was replaced by Fe-imidazole and F8-glycine. Thus, in cavity mutant Hbs, the movement of Fe upon O2-binding is detached from the movement of the F-helix, which is supposed to play a role of communication. Recombinant Hb (rHb)(αH87G), in which only the Fe-His in the α subunits is replaced by Fe-imidazole, showed a biphasic O2-binding with no cooperativity, indicating the coexistence of two independent hemes with different O2-affinities. In contrast, rHb(βH92G), in which only the Fe-His in the β subunits is replaced by Fe-imidazole, gave a simple high-affinity O2-binding curve with no cooperativity. Resonance Raman, 1H NMR, and near-UV circular dichroism measurements revealed that the quaternary structure change did not occur upon O2-binding to rHb(αH87G), but it did partially occur with O2-binding to rHb(βH92G). The quaternary structure of rHb(αH87G) appears to be frozen in T while its tertiary structure is changeable. Thus, the absence of the Fe-His bond in the α subunit inhibits the T to R quaternary structure change upon O2-binding, but its absence in the β subunit simply enhances the O2-affinity of α subunit. 相似文献
18.
Beltramo Dante M. Fernandez Mariana Nuñez Alonso Alejandra del C. Sironi Juan J. Barra Héctor S. 《Neurochemical research》1997,22(4):385-389
We demonstrate here that brain purified tubulin can be dissociated into and subunits at pH > 10 and that the subunits can be separated by using the Triton X-114 phase separation system. After phase partition at pH > 10, tubulin but not tubulin behaves as a hydrophobic compound appearing in the detergent rich phase. After three extractions of the alkaline aqueous phase with Triton X-114, about 90% of the tubulin was recovered in the detergent rich phase. The hydrophobic behavior observed for tubulin after its dissociation at pH 11.5 was not due to an irreversible change of the protein, because when the detergent rich phase containing tubulin was diluted with a buffer solution at pH 7.3 and the solution allowed to partition again, -tubulin is recovered in the aqueous phase. The detergent in the aqueous phase of the and tubulin preparations can be removed up to 90% by 12 h dialysis. The and subunits of tubulin from kidney and liver behave, in this phase separation system, like those of brain tubulin. 相似文献
19.
Classical benzodiazepines, such as diazepam, interact with αxβ2γ2 GABAA receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α1S204Cβ2γ2, α1S205Cβ2γ2 and α1T206Cβ2γ2 and with receptors containing the homologous mutations in α2β2γ2, α3β2γ2, α5β1/2γ2 and α6β2γ2. The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α1S204Cβ2γ2, α1S205Cβ2γ2 and α1T206Cβ2γ2 and homologous positions in α2, α3, α5 and α6 with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABAA receptor isoform α1β2γ2, α2β2γ2, α3β2γ2, α5β1/2γ2 and α6β2γ2. 相似文献
20.
Shuhui Geng Shane N. White Michael L. Paine Malcolm L. Snead 《The Journal of biological chemistry》2015,290(34):20661-20673
Enamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase. The yeast two-hybrid assay identified that proteasome subunit α type 3 (Psma3) interacts with ameloblastin. Confocal microscopy confirmed Psma3 co-distribution with ameloblastin at the ameloblast secretory end piece. Co-immunoprecipitation assay of mouse ameloblast cell lysates with either ameloblastin or Psma3 antibody identified each reciprocal protein partner. Protein engineering demonstrated that only the ameloblastin C terminus interacts with Psma3. We show that 20S proteasome digestion of ameloblastin in vitro generates an N-terminal cleavage fragment consistent with the in vivo pattern of ameloblastin distribution. These findings suggest a novel pathway participating in control of protein distribution within the extracellular space that serves to regulate the protein-mineral interactions essential to biomineralization. 相似文献