共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Nitric oxide, as well as several other oxides of nitrogen, were assayed for their antibacterial action. It is shown that nitric oxide has virtually no effect on bacteria, whereas both NaNO3 and NaNO2 appear to have either neutral or stimulatory effects. It is suggested that the formation of nitrous acid is mainly responsible for the quantitative as well as the qualitative changes that occur in the bacterial flora of cured meat. A pH-dependent “nitrite cycle” is presented to account for the production of nitrous acid in cured meat systems. 相似文献
6.
Effect of Nitric Oxide on Anammox Bacteria 总被引:1,自引:0,他引:1
Boran Kartal Nico C. G. Tan Erwin Van de Biezen Marlies J. Kampschreur Mark C. M. Van Loosdrecht Mike S. M. Jetten 《Applied and environmental microbiology》2010,76(18):6304-6306
The effects of nitrogen oxides on anammox bacteria are not well known. Therefore, anammox bacteria were exposed to 3,500 ppm nitric oxide (NO) in the gas phase. The anammox bacteria were not inhibited by the high NO concentration but rather used it to oxidize additional ammonium to dinitrogen gas under conditions relevant to wastewater treatment.Nitric oxide (NO) has several different roles in bacteria, fungi, and mammals (24). In nitrogen cycle bacteria, it acts as an intermediate and cell communication/signal transduction molecule. On the other hand, NO is a highly reactive and toxic compound that contributes to ozone depletion and air pollution (5). Due to its reactive nature, many bacteria employ an arsenal of proteins (those encoded by norVW, as well as bacterial globins, heme proteins, etc.) that are used to detoxify NO to the less-reactive and more-stable nitrous oxide (N2O) (24). Still, N2O is a very effective greenhouse gas and an unfavorable constituent in the off-gases from nitrification/denitrification nitrogen removal systems (4). The presence of gene(s) encoding cytochrome cd1 nitrite reductase (EMBL accession no. ), flavorubredoxin NorVW (accession no. CAJ74898 and CAJ73918), and bacterial hemoglobin (accession no. CAJ73688) in the genome of Kuenenia stuttgartiensis led to the proposal that NO also plays this dual role (metabolic versus toxic) in anammox bacteria (Fig. CAJ72702(Fig.1)1) (10, 20). This has ramifications for both application and metabolism of anammox bacteria. The source of NO in an anammox reactor could be the activity of other community members (ammonium-oxidizing or denitrifying bacteria) or high concentrations of nitrite in the influent wastewater stream. Full-scale anammox reactors typically contain a significant population of ammonium-oxidizing bacteria (AOB). In the single nitritation-anammox reactors, these carry out the conversion of 50% of the ammonium in the wastewater to nitrite (6). It has been shown that AOB may produce significant amounts of NO (2, 7), and recently it was reported that NO and N2O could be emitted from these reactors up to 0.005 and 1.2% of the total nitrogen load to the reactor, respectively (6, 23). NO may inhibit the anammox bacteria and could also be further reduced to N2O in these reactors (6, 23). It is presently unknown whether anammox bacteria contribute to the NO or N2O emissions, although it has been suggested previously that anammox bacteria do not produce N2O under physiologically relevant conditions (10). Nevertheless, if conversion of NO could be coupled to anaerobic ammonium oxidation, the toxic air pollutant NO would facilitate further removal of ammonium in full-scale anammox bioreactors. In the present study, we investigated the effect of very high NO fluxes on anammox bacteria.Open in a separate windowFIG. 1.The hypothetical anammox pathway with possible routes of NO removal. Solid black arrows: anammox pathway, including nitrite oxidation to nitrate; gray arrow, possible detoxification pathway to N2O (not observed in the bioreactor); dashed gray arrow, NO oxidation to nitrite/nitrate (not possible under anoxic conditions).NO has been described many times as a potent inhibitor of nitrogen cycle bacteria; aerobic ammonium oxidizers, nitrite oxidizers, and denitrifiers were all inhibited by concentrations as low as a few micromolar units (1, 18, 24). In a previous study, it was suggested that “Candidatus Brocadia anammoxidans” could tolerate up to 600 ppm NO (approximately 1 mg NO·day−1 NO load) (16). In the reported experiments, without direct measurement of nitrous oxide (N2O) in the effluent gas stream, it was postulated that NO was reduced to N2O (16). In the present study, we used a carefully monitored sequencing batch reactor (SBR) to further our understanding of the effect and fate of NO in a laboratory-scale anammox reactor under conditions which are relevant in wastewater treatment plants.An SBR (working volume, 3.5 liters) consisting of approximately 80% of the anammox bacterium “Candidatus Brocadia fulgida” and no detectable aerobic ammonium oxidizers (determined by fluorescence in situ hybridization (FISH) as described previously [15]) was used in the present study. Before the first introduction of NO into the reactor, the influent (synthetic wastewater) (21) was supplied to the reactor at a flow rate of 1.4 ml·min−1 with nitrite and ammonium concentrations (assayed as previously described [9]) at 45 and 39 mM, respectively (corresponding to a total of 2,370 mg N·day−1). All nitrite was consumed in the reactor, while 2 mM ammonium was still present in the effluent. For every 1 mol of ammonium, 1.22 mol of nitrite was consumed, similar to the previously determined anammox stoichiometry (19). NO was first introduced at a concentration of 400 to 600 ppm in the gas phase at a flow rate of 10 ml/min (CLD 700EL chemiluminescence NOx analyzer, detection limit of 0.1 ppm NO, with 15 ml/min Ar/CO2 as the dilution gas [a load of 25 to 28 mg NO·day−1]; EcoPhysics, Michigan). During this period, 45% (±6%) of the supplied NO was removed from the system. Initially, there was no detectable change in the ammonium and nitrite removal efficiencies and no detectable nitrous oxide (N2O) in the flue gas (analyzed with an Agilent 6890 gas chromatograph). It is most likely that NO was converted to N2, but the increase in the N2 concentrations in the off-gas was below the detection limit (1,000 ppm).At day 49, the influent NO concentration was increased to 3,500 ppm (640 mg NO·day−1 load). Simultaneously, the stirring speed of the reactor was increased from 200 to 600 rpm to enable better mass transfer to the flocculent anammox biomass. The increase in the stirring speed did not result in any disturbance in the floc size and settling ability of the biomass but did lead to a much higher level of NO removal (128 mg NO·day−1) by the anammox bacteria. The converted NO could theoretically be converted to N2O via detoxification enzymes or coupled to ammonium oxidation (Fig. (Fig.1).1). Surprisingly, there was no change in the nitrite removal capacity of the bioreactor, suggesting that NO was not a substrate preferred over nitrite. Nitrate concentrations (assayed according to the method in reference 9) were stable around 7.2 mM (±0.7 mM). Theoretically, as anammox bacteria reduce NO, they could oxidize a larger proportion of nitrite to nitrate (Fig. (Fig.1)1) to increase their capacity for CO2 fixation; however, such an increase in nitrate production was not observed (or could not be discriminated by the method used [sensitivity, 100 μM]). During this phase of the experiment, the effluent ammonium concentration gradually decreased to below the detection limit (Fig. (Fig.2).2). There was only a minimal N2O (0.6 ppm) emission from the system, and the total N2 production increased from 3,060 to 3,680 mg N2·day−1. This indicated that NO reduction was coupled to the catabolism of the anammox bacteria rather than being detoxified by anammox or other community members. To the best of our knowledge, this was the first time that such a high load of NO was not found to be toxic to the nitrogen cycle bacteria. In a previous study, an NO load of 1 mg NO·day−1 was reported to be toxic to anammox bacteria, most probably due to the fact that the experiments were conducted with biomass that had a 100-fold lower cell density and 10-fold lower activity compared to the current enrichment cultures. Furthermore, the NO conversion in the current experiments was stoichiometrically coupled to ammonium oxidation and not converted to N2O, indicating that the previously reported N2O emissions from full-scale anammox bioreactors originated not with the anammox bacteria but rather with other community members as hypothesized previously (8).Open in a separate windowFIG. 2.Ammonium concentration in the effluent of the anammox bioreactor. Dashed lines indicate the trend of effluent ammonium concentration during different phases of the reactor operation. Black arrows indicate the manipulations to influent NO stream, and the gray arrow points to an increase in the influent ammonium concentration. d, day.To determine if there could be more NO-dependent ammonium removal, the influent ammonium concentration was first increased to 41 mM (day 80) and then to 43 mM (day 81). This resulted in a slow but gradual increase in the effluent ammonium concentration, and additional ammonium did not appear to be completely converted, most probably due to NO mass transfer limitations. As a result of the higher level of ammonium removal, the observed anammox stoichiometry in the reactor decreased from 1.22 to 0.91 (nitrite/ammonium). Between days 95 and 131, the NO supply to the reactor was turned off, which resulted in an average ammonium concentration of 3.3 mM (±0.9 mM) in the effluent. Following this period, on day 132, the NO load on the reactor was increased back to 640 mg NO·day−1 (Fig. (Fig.2).2). As a result, the effluent ammonium concentration gradually decreased again to an average of 1.5 mM (±0.36 mM). The highest level of NO removal achieved in this period was 371 mg NO·day−1. When the NO supply was turned off on day 165, ammonium concentrations increased back to 3.5 mM (±0.71 mM).During the course of the experiment, the biodiversity of the reactor was monitored using FISH and 16S rRNA gene sequence analysis as described previously (15) with probes specific to eubacteria (3), Planctomycetes (13), anammox bacteria (15), “Ca. Brocadia fulgida” (11), and a variety of aerobic ammonium-oxidizing bacteria (12, 22). Before the experiments started and throughout the cultivation of the anammox bacteria with NO, the only detectable anammox species (with FISH and 16S rRNA gene sequence analysis) was “Candidatus Brocadia fulgida.”In the present study, we showed that 2 mM ammonium (4.5% of the influent concentration) could be removed by anammox bacteria via direct coupling to NO reduction. These observations support the proposal of NO as an intermediate of the anammox reaction and have two consequences for application of the anammox process for nitrogen removal. First, we obtained strong indications that previously reported N2O emissions (6, 8) from full-scale anammox reactors were not generated by anammox bacteria. In our experiments, even under a very high load of NO, there was hardly any detectable N2O in the effluent gas stream. The competition for nitrogen oxides by denitrifying and anammox bacteria needs further study but may ultimately be used to design operational conditions that would reduce or even prevent NO and N2O emissions from full-scale nitritation-anammox reactors. Second, by implementing the results of this study, in the future the anammox process could be designed to remove NO from flue gases. Since NO is mostly emitted together with O2, this could be achieved by the combination of anammox and aerobic ammonium-oxidizing bacteria, for example, with CANON (completely autotrophic nitrogen removal over nitrite)- or OLAND (oxygen-limited autotrophic nitrification-denitrification)-type reactor systems (14, 17). 相似文献
7.
Epstein-Barr Viral Antigen in Single Cell Clones of Two Human Leukocytic Lines 总被引:7,自引:1,他引:7
下载免费PDF全文

A method was devised for obtaining single cell clones of human leukocytic cell lines in the presence of a human placental cell feeder layer. Clones of two lines, LS-B and EB3, which contain Epstein-Barr viral (EBV) antigen in approximately 1% of cells were tested for EBV antigen. Since all EB3 clones and LS-B clones contained EBV antigen, it is concluded that in vitro EBV genome is associated with all of the cells. 相似文献
8.
目的探讨一氧化氮(nitric oxide,NO)对局灶性脑缺血再灌注所致神经细胞损伤的影响及影响机制。方法将SD大鼠随机分为假手术组(N组)、脑缺血再灌注组(MCAO组)、脑缺血再灌注加侧脑室微量注射20mmol/L的L-Arg5肚组(L-Arg组)及脑缺血再灌注加侧脑室微量注射20mmol/L的L-NAME5 μl组(L-NAME组),作脑缺血30min,再灌注12h、24h和2d,冰冻切片,相邻切片分别作焦油紫染色、NOS免疫组化、NOSmRNA原位杂交、TUNEL法原位检测凋亡细胞。结果N组NOS的活性弱阳性表达;MCAO组术后24hNOS的表达明显增强,与各组比较,P〈0.05;L-Arg组术后12h小血管内皮细胞出现NOS的阳性高表达,术后24h神经细胞NOS的阳性表达最高,与各组比较,P〈0.05;L-NAME组各时间点NOS活性的表达为阴性或可疑阳性,与各组比较P〈0.05,NOS的活性明显受到抑制。凋亡细胞的计数结果为N组26.3±4、2个,MCAO组62±4.2个,L-Arg组40、6±2.7个,L-NAME组78.3±3.3个,P〈0.05。结论适量NO可有效降低细胞凋亡的发生,减轻脑缺血再灌注所致的神经细胞的损伤。 相似文献
9.
一氧化氮(nitric oxide NO)是微生物中重要的生物活性分子,在细菌生长、生物被膜形成、细胞保护以及耐药性等方面均能发挥重要作用.研究表明,微生物能够感受外源NO的作用,也可以通过自身的一氧化氮合酶(NOS)以及硝化和反硝化过程产生NO,本文将对近年来有关微生物中NO作用的研究进行概述. 相似文献
10.
Ulrike Tartler Klaus-D. Krncke Klaus L. Meyer Christoph V. Suschek Victoria Kolb-Bachofen 《Nitric oxide》2000,4(6):609-614
Zinc is crucial for the biosynthesis, storage, and secretion of insulin in pancreatic islet cells. We have previously presented evidence that NO interferes with cellular Zn(2+) homeostasis and we therefore investigated the influence of chronic NO exposure on the labile islet cell Zn(2+) content. A strong fluorescence activity in a large islet cell subpopulation was found after staining with the Zn(2+)-specific fluorophore Zinquin. Culture for 24 h in the presence of nontoxic concentrations of the slow-releasing NO donor DETA/NO resulted in a significantly reduced Zn(2+)-dependent fluorescence. This appears to be islet specific as in endothelial cells DETA/NO exposure enhanced the Zn(2+)-dependent fluorescence activity in a concentration-dependent manner. These results suggest that NO interferes with cellular Zn(2+) homeostasis, which in islet cells is crucial for proper hormone delivery and thus special cell function. 相似文献
11.
Xiao Liu Zhenze Wang Ping Zhao Zhanming Fan Anqiang Sun Fan Zhan Yubo Fan Xiaoyan Deng 《PloS one》2014,9(11)
Despite the crucial role of nitric oxide (NO) in the homeostasis of the vasculature, little quantitative information exists concerning NO transport and distribution in medium and large-sized arteries where atherosclerosis and aneurysm occur and hemodynamics is complex. We hypothesized that local hemodynamics in arteries may govern NO transport and affect the distribution of NO in the arteries, hence playing an important role in the localization of vascular diseases. To substantiate this hypothesis, we presented a lumen/wall model of the human aorta based on its MRI images to simulate the production, transport and consumption of NO in the arterial lumen and within the aortic wall. The results demonstrated that the distribution of NO in the aorta was quite uneven with remarkably reduced NO bioavailability in regions of disturbed flow, and local hemodynamics could affect NO distribution mainly via flow dependent NO production rate of endothelium. In addition, erythrocytes in the blood could moderately modulate NO concentration in the aorta, especially at the endothelial surface. However, the reaction of NO within the wall could only slightly affect NO concentration on the luminal surface, but strongly reduce NO concentration within the aortic wall. A strong positive correlation was revealed between wall shear stress and NO concentration, which was affected by local hemodynamics and NO reaction rate. In conclusion, the distribution of NO in the aorta may be determined by local hemodynamics and modulated differently by NO scavengers in the lumen and within the wall. 相似文献
12.
Eliana Guerriero Angela Sorice Francesca Capone Virginia Napolitano Giovanni Colonna Gabriella Storti Giuseppe Castello Susan Costantini 《PloS one》2014,9(12)
In recent years the use of natural dietary antioxidants to minimize the cytotoxicity and the damage induced in normal tissues by antitumor agents is gaining consideration. In literature, it is reported that vitamin C exhibits some degree of antineoplastic activity whereas Mitoxantrone (MTZ) is a synthetic anti-cancer drug with significant clinical effectiveness in the treatment of human malignancies but with severe side effects. Therefore, we have investigated the effect of vitamin C alone or combined with MTZ on MDA-MB231 and MCF7 human breast cancer cell lines to analyze their dose-effect on the tumor cellular growth, cellular death, cell cycle and cell signaling. Our results have evidenced that there is a dose-dependence on the inhibition of the breast carcinoma cell lines, MCF7 and MDA-MB231, treated with vitamin C and MTZ. Moreover, their combination induces: i) a cytotoxic effect by apoptotic death, ii) a mild G2/M elongation and iii) H2AX and mild PI3K activation. Hence, the formulation of vitamin C with MTZ induces a higher cytotoxicity level on tumor cells compared to a disjointed treatment. We have also found that the vitamin C enhances the MTZ effect allowing the utilization of lower chemotherapic concentrations in comparison to the single treatments. 相似文献
13.
本文研究了来源于不同前体物的一氧化氮(Nitro oxide,NO)对猪细小病毒(Porcine parvovirus,PPV)体外增殖的影响.结果表明,NO前体物S-硝基-N-乙酰青霉胺(SNAP)、L-精氨酸(L-Arg)均能够有效地诱导PK-15细胞产生NO,进而显著地抑制PPV在PK-15细胞上的复制,其效果与前体物的浓度呈正相关,在浓度为100μmol/L和200μmol/L时,SNAP产生NO的能力与抑制病毒复制的作用要强于L-Arg.在病毒感染前6 h和3 h添加SNAP或L-Arg对病毒复制的抑制作用比在病毒感染后3 h和6 h添加的作用强,表明NO的抗病毒作用主要发生在病毒感染的初始阶段.此外,添加具有抑制L-Arg产生NO作用的N-硝基-L-精氨酸(L-NNA)能抵消L-Arg体外抗病毒的作用. 相似文献
14.
本文研究了来源于不同前体物的一氧化氮(Nitro oxide,NO)对猪细小病毒(Porcine paruouirus,PPV)体外增殖的影响。结果表明,NO前体物S-硝基-N-乙酰青霉胺(SNAP)、L-精氨酸(L-Arg)均能够有效地诱导PK-5细胞产生NO,进而显著地抑制PPV在PK-5细胞上的复制,其效果与前体物的浓度呈正相关,在浓度为100μmol/L和200μmol/L时,SNAP产生NO的能力与抑制病毒复制的作用要强于L-Arg。在病毒感染前6h和3h添加SNAP或L-Arg对病毒复制的抑制作用比在病毒感染后3h和6h添加的作用强,表明NO的抗病毒作用主要发生在病毒感染的初始阶段。此外,添加具有抑制L-Arg产生NO作用的N-硝基-L-精氨酸(L-NNA)能抵消L-Arg体外抗病毒的作用。 相似文献
15.
16.
Jan Walther Stanislas Schastak Sladjana Dukic-Stefanovic Peter Wiedemann Jochen Neuhaus Thomas Claudepierre 《PloS one》2014,9(1)
Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma. 相似文献
17.
I. Shokolenko T. M. Oberyszyn S. M. D''Ambrosio J. E. Saavedra L. K. Keefer S. P. LeDoux G. L. Wilson F. M. Robertson 《Nitric oxide》2001,5(6):555-560
This study was designed to evaluate the DNA damaging effects of nitric oxide and to determine whether the endogenous generation of nitric oxide at low levels in the cell exerts a protective effect against this damage. Damage to mitochondrial and nuclear DNA in normal human epidermal keratinocytes (NHEK) was assessed after treatment of these cells with varying concentrations of S-nitroso-N-acetylpenicillamine, which decomposes to release nitric oxide. The results showed that mitochondrial DNA was more vulnerable to nitric oxide-induced damage than was a similarly sized fragment of the beta-globin gene. To evaluate the effects on DNA damage by pretreatment of cells with low-levels of nitric oxide, NHEK cells were treated with the prodrug V-PYRRO/NO. This agent is metabolized inside these cells and releases small quantities of nitric oxide. The cells then were exposed to damaging amounts of nitric oxide produced by S-nitroso-N-acetylpenicillamine. The results of these studies showed that pretreatment of NHEK cells with V-PYRRO/NO attenuated the mtDNA damage and loss of cell viability produced by exposure to S-nitroso-N-acetylpenicillamine. 相似文献
18.
脂肪酸对人肺腺癌细胞膜流动性的影响 总被引:2,自引:0,他引:2
脂肪酸是细胞膜正常流动性的主要调节因素之一。本文报导了二种不同转移表型人肺腺细胞与九种不同脂肪酸共孵育后,对其细胞膜流动性的影响。结果表明,不同转移一夫肺腺癌细胞对各种脂肪酸有不同的敏感性,高转移癌细胞Anip对棕榈酸和花生酸较敏感,而低转移癌细胞AGZY对棕榈烯酸和亚油酸较敏感。 相似文献
19.
Nitric Oxide Inhibits Rhinovirus-Induced Cytokine Production and Viral Replication in a Human Respiratory Epithelial Cell Line 总被引:9,自引:1,他引:9
下载免费PDF全文

Scherer P. Sanders Edward S. Siekierski Jacqueline D. Porter Stephen M. Richards David Proud 《Journal of virology》1998,72(2):934-942
To better understand the early biochemical events that occur in human rhinovirus (HRV) infections, we examined the kinetics and mechanisms of interleukin-8 (IL-8) and IL-6 production from infected epithelial cells. Several HRV strains caused IL-8 and IL-6 production, but HRV-16 induced maximal IL-8 and IL-6 mRNA expression and protein production more rapidly than did HRV-14, despite similar rates of replication of the two viral strains. Viral induction of cytokine mRNA does not require new protein synthesis, since it was unaffected by cycloheximide treatment. The potent glucocorticoid budesonide did not affect viral replication or cytokine mRNA induction but modestly inhibited cytokine protein production. Interestingly, the nitric oxide donor 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (NONOate) inhibited both rhinovirus replication and cytokine production in a dose-dependent fashion without reducing levels of cytokine mRNA. The NONOate effects were due to release of nitric oxide, because NONOate that had been depleted of its nitric oxide content had no effect. Thus, nitric oxide may play an important anti-inflammatory and antiviral role in colds and nitric oxide donors may represent a novel therapeutic approach. 相似文献