首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fan L  Zhang Y  Qu W  Wang J  Shao W 《Biotechnology letters》2011,33(3):593-598
Three genes, xylA-like, xylA and xylB, were cloned and sequenced from the chromosome of Thermoanaerobacter ethanolicus JW200. xylA and xylB share an operon and encode xylose isomerase and xylulokinase, respectively. The xylA-like gene locates upstream of xylAB operon and encodes a hypothetical protein that lacks xylose isomerase activity. The xylose isomerase was expressed in Escherichia coli and purified by heat treatment and an ion-exchange chromatography. The enzyme had highest activity at 85°C and pH 7.0, and a half-life for 1 h at 85°C. The K (m) and V (max) values for xylose were 11 mM and 25 U/mg, respectively. The high level of expression, easy purification, and thermostability of the XylA from T. ethanolicus JW200 suggests industrial usefulness.  相似文献   

2.
Peng H  Fu B  Mao Z  Shao W 《Biotechnology letters》2006,28(23):1913-1917
Electrotransformation of Thermoanaerobacter ethanolicus JW200 was achieved using the plasmid, pTE16, and a pUC-based suicide vector, pTEA2. The construct pTE16 is based on the Escherichia coli-Clostridium perfringens shuttle vector pJIR715 and contains a thermostable chloramphenicol (Cm) resistance cassette. Evidence supporting transformation was provided by extracting plasmid pTE16 from presumptive transformants of T. ethanolicus and by PCR specific to the chloramphenicol acetyltransferase (cat) gene on the vector pTEA2. Transformation frequencies of plasmid pTE16 and pTEA2 were 50 ± 7.4 and 30 ± 4.2 transformants per μg plasmid DNA. The results provide the first unequivocal gene transfer method functional in T. ethanolicus.  相似文献   

3.
Thermoanaerobacter ethanolicus is an extreme thermophilic non-spore forming ethanol-producing anaerobic bacterium. Minimum nutrient requirements and optimum growth conditions have been established. An optimum yeast extract-glucose ratio for ethanol yield has also been determined. Initial medium pH, optimally 7.5–8.0, significantly affected the amount of ethanol formed. Maximum specific growth rate was found to be 0.22 h?1at pH 7.5 and 69°C. Ethanol concentration up to 11 g l?1at pH 7.5 and 69°C was used to characterize ethanol inhibition. The growth kinetics of T. ethanolicus were characterized in terms of environmental parameters. Substrate utilization, ethanol formation and inhibition by both sugar and ethanol were also quantified.  相似文献   

4.
5.
嗜热厌氧乙醇菌JW200转化条件的研究   总被引:2,自引:0,他引:2  
摘要 嗜热厌氧乙醇菌遗传转化系统的缺少,制约了对该菌理论基础和应用领域的进一步研究。利用聚乙二醇(PEG6000)转化和电转化技术国际首次实现了嗜热厌氧乙醇菌JW200外源基因的导入。PEG转化效率很低,因此选择对电转化条件进行优化,转化效率从4±3.2个转化子/μg质粒DNA提高到50±7.4个转化子/μg质粒DNA。实验表明获得较高的转化效率的必要条件是在细胞密度为OD660 0.2时添加甘氨酸与蔗糖后继续培养2h以及细胞在电击前的收集与洗涤保持低温。本研究为利用基因工程手段改造嗜热厌氧乙醇菌和从分子水平研究胞内乙醇代谢途径奠定了基础。  相似文献   

6.
Thermoanaerobacter ethanolicus is a xylose-utilizing thermophilic anaerobe that produces considerable amounts of ethanol. A protein in xylose-growing cells was solubilized from cell membranes by extraction with octyl-β-glucoside. Internal peptide sequencing revealed that the protein was the product of a gene, xylF, encoding a putative D-xylose-binding protein. Metabolic labeling with 14C palmitic acid suggested that this is a lipoprotein that is anchored to the cell membrane via a cysteine residue. Binding was highly specific for xylose as evident by the lack of competition by sugars with structures similar to xylose. The apparent K d of the protein for xylose was approximately 1.5 μM, and this value was very similar to the affinity constant determined for xylose transport by whole cells at low substrate concentrations. Uptake experiments with cells also suggested the presence of a separate low-affinity system. Binding activity varied less than 20% over a pH range of 4–8, and the level of activity was virtually unaffected when temperature was varied between 40°C and 80°C. This is the first biochemical characterization of a D-xylose-binding protein from a thermophilic organism. Received: 22 April 1998 / Accepted: 21 May 1998  相似文献   

7.
The L(+)-lactate dehydrogenase from Thermoanaerobacter ethanolicus wt was purified to a final specific activity of 598 mumol pyruvate reduced per min per mg of protein. The specific activity of the pure enzyme with L(+)-lactate was 0.79 units per mg of protein. The M(r) of the native enzyme was 134,000 containing a single subunit type of M(r) 33,500 indicating an apparent tetrameric structure. The L(+)-lactate dehydrogenase was activated by fructose 1,6-bisphosphate in a cooperative manner affecting Vmax and Km values. The activity of the enzyme was also effected by pH, pyruvate and NADH. The Km for NADH at pH 6.0 was 0.05 mM and the Vmax for pyruvate reduction at pH 6.0 was 1082 units per mg in the presence of 1 mM fructose 1,6-bisphosphate. The enzyme was inhibited by NADPH, displaying an uncompetitive pattern. This pattern indicated that NADPH was a negative modifier of the enzyme. The role of L(+)-lactate dehydrogenase in controlling the end products of fermentation is discussed.  相似文献   

8.
We report that C. jejuni modifies its outer membrane protein (OMP) repertoire when cultivated under iron-limiting conditions such as during incubation with epithelial cells. To identify genes encoding de novo expressed OMPs, a C. jejuni cosmid library was screened with antisera raised against proteins expressed in the presence of epithelial cells. A single clone was identified encoding an 80-kDa antigen. Sequence analysis of subclones identified an operon of three open reading frames (ORFs) encoding proteins that are homologous to the E. coli ferrichrome uptake system encoded by the fhu locus. Under low-iron conditions, C. jejuni expressed the 80-kDa OMP, indicating that its expression is regulated by the presence of iron. Southern blot analysis indicated that six of eleven isolates of C. jejuni harbor a fhuA homolog which, like all other DNA in this region sequenced thus far, is strikingly GC-rich (65%) compared with the C. jejuni genome (35% G+C). Received: 19 June 2000 / Accepted: 30 August 2000  相似文献   

9.
The fermentation of xylose by Thermoanaerobacter ethanolicus ATCC 31938 was studied in pH-controlled batch and continuous cultures. In batch culture, a dependency of growth rate, product yield, and product distribution upon xylose concentration was observed. With 27 mM xylose media, an ethanol yield of 1.3 mol ethanol/mol xylose (78% of maximum theoretical yield) was typically obtained. With the same media, xylose-limited growth in continuous culture could be achieved with a volumetric productivity of 0.50 g ethanol/liter h and a yield of 0.42 g ethanol/g xylose (1.37 mol ethanol/mol xylose). With extended operation of the chemostat, variation in xylose uptake and a decline in ethanol yield was seen. Instability with respect to fermentation performance was attributed to a selection for mutant populations with different metabolic characteristics. Ethanol production in these T. ethanolicus systems was compared with xylose-to-ethanol conversions of other organisms. Relative to the other systems, T. ethanolicus offers the advantages of a high ethanol yield at low xylose concentrations in batch culture and of a rapid growth rate. Its disadvantages include a lower ethanol yield at higher xylose concentrations in batch culture and an instability of fermentation characteristics in continuous culture.  相似文献   

10.
11.
W Shao  J Wiegel 《Journal of bacteriology》1992,174(18):5848-5853
A highly thermostable beta-xylosidase, exhibiting similarly high activities for arylxylose and arylarabinose, was purified (72-fold) to gel electrophoretic homogeneity from the ethanologenic thermophilic anaerobe Thermoanaerobacter ethanolicus. The isoelectric point is pH 4.6; the apparent molecular weight is around 165,000 for the native enzyme (gel filtration and gradient polyacrylamide gel electrophoresis) and 85,000 for the two subunits (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The enzyme exhibited the highest affinity towards p-NO2-phenyl xyloside (pNPX) (substrate concentration for half-maximal activity = 0.018 mM at 82 degrees C and pH 5.0) but the highest specific activity with p-NO2-phenylarabinofuranoside. T(opt), 5 min, the temperature for the maximum initial activity in a 5-min assay of the purified enzyme, was observed around pH 5.9 and 93 degrees C; however at 65 and 82 degrees C, the pH optimum was 5.0 to 5.2, and at this pH the maximal initial activity was observed at 82 degrees C (pH 5.0 to 5.5). The pH curves and temperature curves for arylxylosides as substrates differed significantly from those for arylarabinosides as substrates. An incubation for 3 h at 82 degrees C in the absence of substrate reduced the activity to around 75%. At 86 degrees C the half-life was around 15 min. With pNPX as the substrate, an Arrhenius energy of 69 kJ/mol was determined. The N-terminal sequence did not reveal a high similarity to those from other published enzyme sequences.  相似文献   

12.
辅酶NADH/NAD+在细胞内氧化还原反应中起着重要的作用,是细胞生长和能量代谢必不可少的辅因子。调节微生物胞内NADH/NAD+的比率是定向改变微生物代谢,高效获得目标代谢产物的有效手段。嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus)是高温厌氧菌中乙醇产量较高的代表性菌株,本文利用不同氧化还原态的碳源改变T.ethanolicus的胞内NADH/NAD+含量和比例,进而研究了其对细胞生长、代谢产物分布的影响。以不同比例的葡萄糖/甘露醇作为混合碳源发酵,胞内氧化还原水平、细胞的生长特性、代谢产物都发生了不同程度的差异,以葡萄糖作为唯一碳源进行培养时,T.ethanolicus生长良好,乙醇产量为0.79g/L,但胞内NADH/NAD+比值和乙醇/乙酸的比值都比较低,分别为0.47和4.82;随着葡萄糖在混合碳源中比例的下降,NADH/NAD+比值增高,发酵产物中乙醇/乙酸比值也呈现上升的趋势。而以甘露醇作为唯一碳源时,发酵产物中乙醇浓度为0.389g/L,NADH/NAD+比值和乙醇/乙酸的比值分别为1.04和16.0。  相似文献   

13.
14.
Thermoanaerobacter ethanolicus (ATCC 31550) has primary and secondary alcohol dehydrogenases. The two enzymes were purified to homogeneity as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The apparent Mrs of the primary and secondary alcohol dehydrogenases are 184,000 and 172,000, respectively. Both enzymes have high thermostability. They are tetrameric with apparently identical subunits and contain from 3.2 to 5.5 atoms of Zn per subunit. The two dehydrogenases are NADP dependent and reversibly convert ethanol and 1-propanol to the respective aldehydes. The Vm values with ethanol as a substrate are 45.6 μmol/min per mg for the primary alcohol dehydrogenase and 13 μmol/min per mg for the secondary alcohol dehydrogenase at pH 8.9 and 60°C. The primary enzyme oxidizes primary alcohols, including up to heptanol, at rates similar to that of ethanol. It is inactive with secondary alcohols. The secondary enzyme is inactive with 1-pentanol or longer chain alcohols. Its best substrate is 2-propanol, which is oxidized 15 times faster than ethanol. The secondary alcohol dehydrogenase is formed early during the growth cycle. It is stimulated by pyruvate and has a low Km for acetaldehyde (44.8 mM) in comparison to that of the primary alcohol dehydrogenase (210 mM). The latter enzyme is formed late in the growth cycle. It is postulated that the secondary alcohol dehydrogenase is largely responsible for the formation of ethanol in fermentations of carbohydrates by T. ethanolicus.  相似文献   

15.
16.
We found that the reproducibility of chemostat trials can be improved by using chemostat-adapted strains. Our experimental findings are consistent with adaptation that involves an improvement in culture fitness and an alteration of the fermentation genotype.  相似文献   

17.
Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase (2 degrees ADH) was optimally active near 90 degrees C displaying thermostability half-lives of 1.2 days, 1.7 h, 19 min, 9.0 min, and 1.3 min at 80 degrees C, 90 degrees C, 92 degrees C, 95 degrees C, and 99 degrees C, respectively. Enzyme activity loss upon heating (90-100 degrees C) was accompanied by precipitation, but the soluble enzyme remaining after partial inactivation retained complete activity. Enzyme thermoinactivation was modeled by a pseudo-first order rate equation suggesting that the rate determining step was unimolecular with respect to protein and thermoinactivation preceded aggregation. The apparent 2 degrees ADH melting temperature (T(m)) occurred at approximately 115 degrees C, 20 degrees C higher than the temperature for maximal activity, suggesting that it is completely folded in its active temperature range. Thermodynamic calculations indicated that the active folded structure of the 2 degrees ADH is stabilized by a relatively small Gibbs energy (triangle upG(stab.)(double dagger) = 110 kJ mol(-1)). 2 degrees ADH catalytic activities at 37 degrees C to 75 degrees C, were 2-fold enhanced by guanidine hydrochloride (GuHCl) concentrations between 120 mM and 190 mM. These results demonstrate the extreme resistance of this thermophilic 2 degrees ADH to thermal or chemical denaturation; and suggest increased temperature or GuHCl levels seem to enhance protein fixability and activity.  相似文献   

18.
Thermoanaerobacter ethanolicus is a gram-positive thermophile that produces considerable amounts of ethanol from soluble sugars and polymeric substrates, including starch. Growth on maltose, a product of starch hydrolysis, was associated with the production of a prominent membrane-associated protein that had an apparent molecular weight of 43,800 and was not detected in cells grown on xylose or glucose. Filter-binding assays revealed that cell membranes bound maltose with high affinity. Metabolic labeling of T. ethanolicus maltose-grown cells with [14C]palmitic acid showed that this protein was posttranslationally acylated. A maltose-binding protein was purified by using an amylose resin affinity column, and the binding constant was 270 nM. Since maltase activity was found only in the cytosol of fractionated cells and unlabeled glucose did not compete with radiolabeled maltose for uptake in whole cells, it appeared that maltose was transported intact. In whole-cell transport assays, the affinity for maltose was approximately 40 nM. Maltotriose and α-trehalose competitively inhibited maltose uptake in transport assays, whereas glucose, cellobiose, and a range of disaccharides had little effect. Based on these results, it appears that T. ethanolicus possesses a high-affinity, ABC type transport system that is specific for maltose, maltotriose, and α-trehalose.  相似文献   

19.
Maintenance coefficients and theoretical maximum growth yields, with respect to both substrate and ATP, were estimated for Thermoanaerobacter ethanolicus growing in a glucose-limited, continuous culture. A comparison of these values with those for other bacteria showed that, contrary to predictions by others, anaerobic thermophiles had neither low observed growth yields nor high maintenance energy coefficients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号