首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galactosyltransferase Defects in Reeler Mouse Brains   总被引:1,自引:1,他引:0  
Galactosyltransferase activities were examined in the cerebellum, cerebral cortex, and brain stem of reeler and wild-type mice. Galactosyltransferase assays were optimal for all required substrates, linear with incubation time, and proportional to protein concentration. In brain areas affected by the reeler mutation (i.e., cerebral cortex and cerebellum), galactosylation of both endogenous and exogenous glycoprotein acceptors was greatly reduced in reeler relative to controls. On the other hand, glycosylation of endogenous glycolipids was low, and equal between reeler and wild-type. Galactosyltransferase activities were similar, though not identical, in reeler and wild-type brain stems, which are phenotypically normal in reeler mice. Glucosyltransferase, beta-galactosidase, beta-N-acetylglucosaminidase, acid phosphatase, and lactate dehydrogenase specific activities were all unaffected in reeler cerebella, while galactosyltransferase activity was 52% of control. Inhibition of either UDPgalactose hydrolysis or beta-galactosidase had no effect on galactosyltransferase activity. The spectrum or galactosyltransferase deficiencies in reeler suggests that this enzyme is associated with the development of young granule cells.  相似文献   

2.
Circadian changes in the brain histamine (HA) and tele-methylhistamine (t-MH) levels were studied in mice and rats after adaptation to an alternating 12-h light/dark cycle (lights on at 0600). Although there was no significant circadian fluctuation of the brain HA levels, the levels of t-MH, a major metabolite of brain HA, showed a marked circadian variation. In mice, the t-MH levels were about 80 ng/g from 1200 to 1800 but about two times higher values were obtained from 2400 to 0600 of the next morning. In rats, the t-MH levels ranged from 24 to 28 ng/g at 0600 and 1200, slightly increased at 1800, and reached at 2400 a peak twice as high as the levels seen during the light period. The t-MH levels again rapidly decreased during the subsequent 3 h. In mice fasted from 1200, the t-MH levels did not increase during the period of darkness. When mice were fed at 1200 after a 24-h fast, a significant increase in the t-MH levels was observed at 1800. There was no significant circadian variation of the HA and t-MH levels in the plasma of mice and rats. These results suggest that circadian variation in brain t-MH levels is related to feeding and possible subsequent changes in elimination of t-MH from the brain and/or turnover of HA in the brain. This phenomenon should be given due attention when HA dynamics in the brain are being assessed.  相似文献   

3.
Understanding the architecture of mammalian brain at single-cell resolution is one of the key issues of neuroscience. However, mapping neuronal soma and projections throughout the whole brain is still challenging for imaging and data management technologies. Indeed, macroscopic volumes need to be reconstructed with high resolution and contrast in a reasonable time, producing datasets in the TeraByte range. We recently demonstrated an optical method (confocal light sheet microscopy, CLSM) capable of obtaining micron-scale reconstruction of entire mouse brains labeled with enhanced green fluorescent protein (EGFP). Combining light sheet illumination and confocal detection, CLSM allows deep imaging inside macroscopic cleared specimens with high contrast and speed. Here we describe the complete experimental pipeline to obtain comprehensive and human-readable images of entire mouse brains labeled with fluorescent proteins. The clearing and the mounting procedures are described, together with the steps to perform an optical tomography on its whole volume by acquiring many parallel adjacent stacks. We showed the usage of open-source custom-made software tools enabling stitching of the multiple stacks and multi-resolution data navigation. Finally, we illustrated some example of brain maps: the cerebellum from an L7-GFP transgenic mouse, in which all Purkinje cells are selectively labeled, and the whole brain from a thy1-GFP-M mouse, characterized by a random sparse neuronal labeling.  相似文献   

4.
5.
饥饿对小鼠脑中tau蛋白磷酸化和O-GlcNAc糖基化的影响   总被引:4,自引:1,他引:4  
为了探讨大脑中葡萄糖摄取和代谢障碍在阿尔茨海默病(Alzheimer$sdisease,AD)神经退行性病变中的作用,将昆明种小鼠进行饥饿和再喂食处理,并使用多种磷酸化tau蛋白特异性的抗体和蛋白O-GlcNAc糖基化特异性抗体进行检测,观察饥饿及恢复喂养后不同时间点大脑皮质中tau蛋白糖基化及多个位点磷酸化的变化.结果显示:饥饿处理引起小鼠大脑皮质中总蛋白和tau蛋白的O-GlcNAc糖基化水平降低,同时tau蛋白磷酸化水平升高,饥饿引起的tauO-GlcNAc糖基化和磷酸化改变均在恢复进食后逆转成正常水平.该研究结果提示:大脑中tau蛋白的磷酸化和O-GlcNAc糖基化之间存在相互调节,脑中葡萄糖代谢障碍可能通过下调tau蛋白O-GlcNAc糖基化水平使tau蛋白产生异常过度磷酸化,进而促发AD的病理进程.这一结果为在早期阶段通过逆转tau蛋白异常过度磷酸化治疗AD成为可能提供了实验基础.  相似文献   

6.
In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.  相似文献   

7.
ES细胞是建立基因打靶突变小鼠的必要条件 ,也可用于制备转基因动物 .基因敲除、精细突变和条件性基因打靶技术建立的基因打靶突变小鼠在人类遗传病机理研究、基因治疗和基因功能研究方面都有着重要作用 .  相似文献   

8.
High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.  相似文献   

9.
Proinflammatory state of the brain increases the risk for seizure development. Neonatal Borna disease virus (BDV)-infection of mice with neuronal overexpression of tumor necrosis factor-α (TNF) was used to investigate the complex relationship between enhanced cytokine levels, neurotropic virus infection and reaction pattern of brain cells focusing on its role for seizure induction. Viral antigen and glial markers were visualized by immunohistochemistry. Different levels of TNF in the CNS were provided by the use of heterozygous and homozygous TNF overexpressing mice. Transgenic TNF, total TNF (native and transgenic), TNF-receptor (TNFR1, TNFR2), IL-1 and N-methyl-D-aspartate (NMDA)-receptor subunit 2B (NR2B) mRNA values were measured by real time RT-PCR. BDV-infection of TNF-transgenic mice resulted in non-purulent meningoencephalitis accompanied by epileptic seizures with a higher frequency in homozygous animals. This correlated with lower weight gain, stronger degree and progression of encephalitis and early, strong microglia activation in the TNF-transgenic mice, most obviously in homozygous animals. Activation of astroglia could be more intense and associated with an unusual hypertrophy in the transgenic mice. BDV-antigen distribution and infectivity in the CNS was comparable in TNF-transgenic and wild-type animals. Transgenic TNF mRNA-expression was restricted to forebrain regions as the transgene construct comprised the promoter of NMDA-receptor subunit2B and induced up-regulation of native TNF mRNA. Total TNF mRNA levels did not increase significantly after BDV-infection in the brain of transgenic mice but TNFR1, TNFR2 and IL-1 mRNA values, mainly in the TNF overexpressing brain areas. NR2B mRNA levels were not influenced by transgene expression or BDV-infection. Neuronal TNF-overexpression combined with BDV-infection leads to cytokine up-regulation, CNS inflammation and glial cell activation and confirmed the presensitizing effect of elevated cytokine levels for the development of spontaneous epileptic seizures when exposed to additional infectious noxi.  相似文献   

10.
Stroke is pathologically associated with oxidative stress, protein damage, and neuronal loss. We previously reported that overexpression of a ubiquitin-like protein, ubiquilin-1 (Ubqln), protects neurons against ischemia-caused brain injury, while knockout of the gene exacerbates cerebral ischemia-caused neuronal damage and delays functional recovery. Although these observations indicate that Ubqln is a potential therapeutic target, transgenic manipulation-caused overexpression of Ubqln occurs before the event of ischemic stroke, and it remains unknown whether delayed Ubqln overexpression in post-ischemic brains within a clinically relevant time frame is still beneficial. To address this question, we generated lentiviruses (LVs) either overexpressing or knocking down mouse Ubqln, and treated post-ischemic stroke mice 6 h following the middle cerebral artery occlusion with the LVs before animal behaviors were evaluated at day 1, 3, 5, and 7. Our data indicate that post-ischemic overexpression of Ubqln significantly promoted functional recovery, whereas post-ischemic downregulation of Ubqln expression delays functional recovery. To further understand the mechanisms underlying how Ubqln functions, we also isolated protein aggregates from the brains of wild-type mice or the mice overexpressing Ubqln following ischemia/reperfusion. Western blot analysis indicates that overexpression of Ubqln significantly reduced the accumulation of protein aggregates. These observations not only suggest that Ubqln is a useful candidate for therapeutic intervention for ischemic stroke but also highlight the significance of proteostasis in functional recovery following stroke.  相似文献   

11.
In UTMD, bioactive molecules, such as negatively charged plasmid DNA vectors encoding a gene of interest, are added to the cationic shells of lipid microbubble contrast agents7-9. In mice these vector-carrying microbubbles can be administered intravenously or directly to the left ventricle of the heart. In larger animals they can also be infused through an intracoronary catheter. The subsequent delivery from the circulation to a target organ occurs by acoustic cavitation at a resonant frequency of the microbubbles. It seems likely that the mechanical energy generated by the microbubble destruction results in transient pore formation in or between the endothelial cells of the microvasculature of the targeted region10. As a result of this sonoporation effect, the transfection efficiency into and across the endothelial cells is enhanced, and transgene-encoding vectors are deposited into the surrounding tissue. Plasmid DNA remaining in the circulation is rapidly degraded by nucleases in the blood, which further reduces the likelihood of delivery to non-sonicated tissues and leads to highly specific target-organ transfection.Download video file.(51M, mov)  相似文献   

12.
Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown.  相似文献   

13.
Function analysis of rodent respiratory skeletal muscles, particularly the diaphragm, is commonly performed by isolating muscle strips using invasive surgical procedures. Although this is an effective method of assessing in vitro diaphragm activity, it involves non-survival surgery. The application of non-invasive ultrasound imaging as an in vivo procedure is beneficial since it not only reduces the number of animals sacrificed, but is also suitable for monitoring disease progression in live mice. Thus, our ultrasound imaging method may likely assist in the development of novel therapies that alleviate muscle injury induced by various respiratory diseases. Particularly, in clinical diagnoses of obstructive lung diseases, ultrasound imaging has the potential to be used in conjunction with other standard tests to detect the early onset of diaphragm muscle fatigue. In the current protocol, we describe how to accurately evaluate diaphragm contractility in a mouse model using a diagnostic ultrasound imaging technique.  相似文献   

14.
Four groups of C57BL mice were irradiated with 3 GHz pulse (PW) microwaves for 3 hours at incident power densities of 0.1, 0.5, 1 and 5 mW/cm2 respectively. The amount of mitochondria1 marker enzymes succinate dehydrogenase (SDH) and monoamine oxidase (MAO) in the hypothalamus and hippocampus were determined by microspectrophotometry. SDH and MA0 in the irradiated groups (except 0.1 mW/cm2) were significantly lower compared to the control group (p < 0.01). The lowest level occurred in the 5 mW/cm2 group. The threshold level was 0.5 mW/cm2. To compare the effects of PW with continuous wave (CW) exposure, two experimental groups were exosed to 2.45 GHz, using CW; the enzymes were decreased only in the 5 mW/cm2 group. The results show that PW radiation is more effective then CW radiation in decreasing SDH and MA0 levels.  相似文献   

15.
High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease.  相似文献   

16.
Tissue clearing allows microscopy of large specimens as whole mouse brains or embryos. However, lipophilic tissue clearing agents as dibenzyl ether limit storage time of GFP-expressing samples to several days and do not prevent them from photobleaching during microscopy. To preserve GFP fluorescence, we developed a transparent solid resin formulation, which maintains the specimens'' transparency and provides a constant signal to noise ratio even after hours of continuous laser irradiation. If required, high-power illumination or long exposure times can be applied with virtually no loss in signal quality and samples can be archived for years.  相似文献   

17.

Background

Ultrasound plays an important role in cancer diagnosis. B-mode imaging and contrast-enhanced ultrasound are routinely used to detect cancerous lesions in breast and liver. The use of ultrasound contrast agents (UCAs) such as microbubbles (MBs), which can be functionalized with targeting ligands, has further enabled ultrasound molecular imaging (USMI) of specific molecular markers in pre-clinical and the first clinical studies. As targeted MBs have a diameter of 1–4 μm, they are limited to the blood vasculature upon intravenous injection, and can bind to markers of the vascular endothelium. USMI with targeted MBs was applied for imaging of markers of inflammation, angiogenesis, and the tumor endothelium.

Aim

The present review provides an introduction to USMI and presents currently available UCAs, targeting strategies, pre-clinical targets, proposed applications, and the first clinical studies with USMI to guide novel users and assess the technique's potential for clinical use.  相似文献   

18.
19.
A simple method for creating a highly targeted immune response has been proposed. It has been shown that under the impact of low- and moderate-intensity ultrasound it is possible to strip antigens off the cell surface (surface antigens). It has been found that the immunogenicity of these surface antigens is no lower than the immunogenicity of intact cells. These results imply that it may be possible to create a specific highly targeted immune response against tissues and cells from whose surface the antigens were stripped, in particular, a targeted immune response against malignant tumors.  相似文献   

20.

Background

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the pacemaking current, Ih, which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal and ancillary subunits. KCNE2 is a voltage-gated potassium channel ancillary subunit that also regulates heterologously expressed HCN channels; whether KCNE2 regulates neuronal HCN channel function is unknown.

Methodology/Principal Findings

We investigated the effects of Kcne2 gene deletion on Ih properties and excitability in ventrobasal (VB) and cortical layer 6 pyramidal neurons using brain slices prepared from Kcne2 +/+ and Kcne2 −/− mice. Kcne2 deletion shifted the voltage-dependence of Ih activation to more hyperpolarized potentials, slowed gating kinetics, and decreased Ih density. Kcne2 deletion was associated with a reduction in whole-brain expression of both HCN1 and HCN2 (but not HCN4), although co-immunoprecipitation from whole-brain lysates failed to detect interaction of KCNE2 with HCN1 or 2. Kcne2 deletion also increased input resistance and temporal summation of subthreshold voltage responses; this increased intrinsic excitability enhanced burst firing in response to 4-aminopyridine. Burst duration increased in corticothalamic, but not thalamocortical, neurons, suggesting enhanced cortical excitatory input to the thalamus; such augmented excitability did not result from changes in glutamate release machinery since miniature EPSC frequency was unaltered in Kcne2 −/− neurons.

Conclusions/Significance

Loss of KCNE2 leads to downregulation of HCN channel function associated with increased excitability in neurons in the cortico-thalamo-cortical loop. Such findings further our understanding of the normal physiology of brain circuitry critically involved in cognition and have implications for our understanding of various disorders of consciousness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号