首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

2.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

3.
4.
5.
A bacterial mixed culture reductively dechlorinating trichlorobenzenes was established in a defined, synthetic mineral medium without any complex additions and with pyruvate as the carbon and energy source. The culture was maintained over 39 consecutive transfers of small inocula into fresh media, enriching the dechlorinating activity. In situ probing with fluorescence-labeled rRNA-targeted oligonucleotide probes revealed that two major subpopulations within the microbial consortium were phylogenetically affiliated with a sublineage within the Desulfovibrionaceae and the gamma subclass of Proteobacteria. The bacterial consortium grew by fermentation of pyruvate, forming acetate, propionate, CO2, formate, and hydrogen. Acetate and propionate supported neither the reduction of trichlorobenzenes nor the reduction of sulfate when sulfate was present. Hydrogen and formate were used for sulfate reduction to sulfide. Sulfate strongly inhibited the reductive dechlorination of trichlorobenzenes. However, when sulfate was depleted in the medium due to sulfate reduction, dechlorination of trichlorobenzenes started. Similar results were obtained when sulfite was present in the cultures. Molybdate at a concentration of 1 mM strongly inhibited the dechlorination of trichlorobenzenes. Cultures supplied with molybdate plus sulfate did not reduce sulfate, but dechlorination of trichlorobenzenes occurred. Supplementation of electron-depleted cultures with various electron sources demonstrated that formate was used as a direct electron donor for reductive dechlorination, whereas hydrogen was not.Chlorobenzenes are widespread pollutants and accumulate in the food chain due to their hydrophobicity and strong persistence against chemical and microbial degradation (34). Anaerobic reductive dechlorination of chlorinated benzenes was demonstrated for enrichment cultures from biofilm reactors, sewage sludge, river sediment, and soil (3, 4, 15, 16, 22, 31, 37). Dechlorination pathways for all multiply chlorinated benzenes were elucidated (4, 15). Some dechlorination patterns can be rationalized by thermodynamic considerations (3, 13), but little is known about the microorganisms participating in chlorobenzene dechlorination.Anaerobic bacteria transforming chlorobenzoates and/or chlorophenols have been isolated in pure cultures (5, 7, 18, 27, 39, 40, 45, 48). Desulfomonile tiedjei (12), strain 2CP-1 (7), Desulfitobacterium chlororespirans (39), and Desulfitobacterium sp. strain PCE1 (18) grow anaerobically by chlororespiration. So far, it has not been possible to evaluate whether the anaerobic dechlorination of chlorobenzenes proceeds via a similar mechanism, since pure cultures are not available.While the effect of oxygen and nitrate on the dechlorination of chloroaromatics is reported to be negative for most cultures (32), the effect of sulfur oxyanions is controversial. Some reports stated an inhibitory role of sulfate in the reductive dehalogenation of various chlorinated or fluorinated aromatics (17, 19, 25, 26); other studies found only slight inhibition (24), no inhibition (14), or even a stimulated rate of dechlorination (17, 23). For one mixed culture, the mineralization of chlorophenols was concomitantly coupled to the reduction of sulfur oxyanions (20, 21). With pure cultures of D. tiedjei, it could be shown that sulfite and thiosulfate inhibited the dechlorination of 3-chlorobenzoate in growing cells, nongrowing cells, and cell extracts, while sulfate inhibited dechlorination only in growing cells (46).The high toxicity (22) and the low solubility of chlorobenzenes in water prevented the successful isolation of bacteria with chlorobenzenes as electron acceptors. It is therefore essential to study alternative electron acceptors that could be used by chlorobenzene-dechlorinating bacteria and that could substitute for chlorobenzenes during enrichment and isolation. Information about reductive dechlorination of chlorobenzenes in the presence of other electron acceptors is also needed for the evaluation of dechlorination processes at natural sites and for in situ remediation projects. To our knowledge, detailed studies of the effects of alternative electron acceptors on the dechlorination of chlorobenzenes have not been reported so far.The aim of the present study was to describe the physiological properties of a mixed culture effectively dechlorinating trichlorobenzenes and to determine the effects of various specific inhibitors and alternative electron acceptors. For these experiments, we used a stable, sediment-free mixed consortium growing in a defined, synthetic mineral medium. This consortium has been established in our laboratory from a fluidized bed bioreactor (1, 33) and reductively dechlorinates 1,2,3-trichlorobenzene to 1,3-dichlorobenzene and 1,2,4-trichlorobenzene to 1,4- and 1,3-dichlorobenzene. By inhibiting the activity of methanogenic bacteria using the specific inhibitor bromoethanesulfonate (BES), we showed that dechlorination occurs independently from methanogenic bacteria (1), as has also been shown for other enrichment cultures dechlorinating chlorobenzenes (22, 31).  相似文献   

6.
7.
8.
9.
10.
11.
The pseudopilus is a key feature of the type 2 secretion system (T2SS) and is made up of multiple pseudopilins that are similar in fold to the type 4 pilins. However, pilins have disulfide bridges, whereas the major pseudopilins of T2SS do not. A key question is therefore how the pseudopilins, and in particular, the most abundant major pseudopilin, GspG, obtain sufficient stability to perform their function. Crystal structures of Vibrio cholerae, Vibrio vulnificus, and enterohemorrhagic Escherichia coli (EHEC) GspG were elucidated, and all show a calcium ion bound at the same site. Conservation of the calcium ligands fully supports the suggestion that calcium ion binding by the major pseudopilin is essential for the T2SS. Functional studies of GspG with mutated calcium ion-coordinating ligands were performed to investigate this hypothesis and show that in vivo protease secretion by the T2SS is severely impaired. Taking all evidence together, this allows the conclusion that, in complete contrast to the situation in the type 4 pili system homologs, in the T2SS, the major protein component of the central pseudopilus is dependent on calcium ions for activity.In Gram-negative bacteria, the type 2 secretion system (T2SS)2 is used for the secretion of several important proteins across the outer membrane (1). The T2SS is also called the terminal branch of the general secretory pathway (Gsp) (2) and, in Vibrio species, the extracellular protein secretion (Eps) apparatus (3). This sophisticated multiprotein machinery spans both the inner and the outer membrane of Gram-negative bacteria and contains 11–15 different proteins. The T2SS consists of three major subassemblies (49): (i) the outer membrane complex comprising mainly the crucial multisubunit secretin GspD; (ii) the pseudopilus, which consists of one major and several minor pseudopilins; and (iii) an inner membrane platform, containing the cytoplasmic secretion ATPase GspE and the membrane proteins GspL, GspM, GspC, and GspF.The pseudopilus is a key element of the T2SS that forms a helical fiber spanning the periplasm. The fiber is assembled from multiple subunits of the major pseudopilin GspG (4, 5, 1014). The pseudopilus is thought to form a plug of the secretin pore in the outer membrane and/or to function as a piston during protein secretion. In recent years, studies of the T2SS pseudopilins led to structure determinations of all individual pseudopilins (13, 1517). The recent structure of the helical ternary complex of GspK-GspI-GspJ suggested that these three minor pseudopilins form the tip of the pseudopilus (17). A crystal structure of GspG from Klebsiella oxytoca was in a previous study combined with electron microscopy data to arrive at a helical arrangement, with no evidence for special features, such as disulfide bridges, other covalent links, or metal-binding sites, for stabilizing this major pseudopilin or the pseudopilus (13).The pseudopilins of the T2SS share a common fold with the type 4 pilins (1521). Pilins are proteins incorporated into pili, long appendages on the surface of bacteria forming thin, strong fibers with multiple functions (19, 21). Type 4 pilins and pseudopilins contain a prepilin leader sequence that is cleaved off by a prepilin peptidase, yielding mature protein (10, 11, 22). A distinct feature of the type 4 pilins is the occurrence of a disulfide bridge connecting β4 to a Cys in the so-called “D-region” near the C terminus (21). In a recent study (23) on the thin fibers of Gram-positive bacteria, isopeptide units appeared to be essential for providing these filaments sufficient cohesion and stability. A key question was therefore whether the major pseudopilin GspG also requires a special feature to obtain sufficient stability to perform its function.  相似文献   

12.
13.
14.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

15.
The identification of exported proteins by fusion studies, while well developed for gram-negative bacteria, is limited for gram-positive bacteria, in part due to drawbacks of available export reporters. In this work, we demonstrate the export specificity and use of the Staphylococcus aureus secreted nuclease (Nuc) as a reporter for gram-positive bacteria. Nuc devoid of its export signal (called ΔSPNuc) was used to create two fusions whose locations could be differentiated. Nuclease activity was shown to require an extracellular location in Lactococcus lactis, thus demonstrating the suitability of ΔSPNuc to report protein export. The shuttle vector pFUN was designed to construct ΔSPNuc translational fusions whose expression signals are provided by inserted DNA. The capacity of ΔSPNuc to reveal and identify exported proteins was tested by generating an L. lactis genomic library in pFUN and by screening for Nuc activity directly in L. lactis. All ΔSPNuc fusions displaying a strong Nuc+ phenotype contained a classical or a lipoprotein-type signal peptide or single or multiple transmembrane stretches. The function of some of the predicted signals was confirmed by cell fractionation studies. The fusions analyzed included long (up to 455-amino-acid) segments of the exported proteins, all previously unknown in L. lactis. Homology searches indicate that several of them may be implicated in different cell surface functions, such as nutrient uptake, peptidoglycan assembly, environmental sensing, and protein folding. Our results with L. lactis show that ΔSPNuc is well suited to report both protein export and membrane protein topology.Most exported proteins are targeted for transport by a primary export signal comprising a hydrophobic domain. The signal can be present at the protein N terminus and cleaved during transport (i.e., signal peptide), but it can also remain embedded in the membrane (i.e., transmembrane segment) (63). Exported proteins are estimated to represent about 20% of total cellular proteins in gram-negative bacteria (39, 44), and contribute to various essential processes like nutrient uptake, macromolecular transport and assembly, envelope biogenesis and integrity, motility, cell division, energy generation, scavenging and detoxification, signal transduction, stress resistance, cell communication, and virulence in the case of pathogens.Several years ago, the elegant strategy of translational fusion to an export-specific reporter protein was designed to specifically isolate genes encoding exported proteins. This kind of reporter is translocation competent but unable to direct its own export (it corresponds to a signal peptideless form of an exported protein), and its activity requires an extracytoplasmic location. Among a library of proteins N-terminally fused to such a reporter, only fusions having the proper signal are exported and active. This strategy was first described for Escherichia coli using alkaline phosphatase (PhoA) as a reporter (16, 36); since then it has been applied to many gram-negative bacteria, particularly pathogens (for reviews, see references 24 and 35 and references therein).Export-specific reporters have a potentially important use in gram-positive bacteria, not only for protein identification and structural analyses, but also for technological applications. Most studies directly adopted the gram-negative reporters available, PhoA and the E. coli TEM β-lactamase (BlaM) (5). The Bacillus licheniformis α-amylase, AmyL, has also been used (17). Surprisingly, relatively few fusion studies allowed identification and characterization of the exported proteins (32, 42). In many cases, only the export signal was characterized (17, 18, 43, 51, 54, 55), possibly because only very short polypeptides (60 amino acids) were fused to the reporter.The rather limited results obtained by using reporter fusions may reveal that the reporters used are not fully adapted for use in gram-positive bacteria. (i) Fusions to gram-negative reporters PhoA and BlaM seem to display little activity and/or to be less stable in gram-positive bacteria, probably because of improper folding (42, 54). Both PhoA (active as a dimer) and BlaM folding require disulfide bond formation, which is catalyzed by DsbA in various gram-negative bacteria (3, 22); it is not yet clear whether such a process exists in gram-positive bacteria (19). Furthermore, altered codon usage and GC content may decrease expression of reporter genes. (ii) Selection of BlaM fusions has been routinely performed in E. coli, possibly due to difficulties of direct ampicillin resistance selection in gram-positive bacteria (43, 51, 54). Such preselection may create a bias due to species specificity of export signals, which, for signal peptides, are significantly longer in gram-positive bacteria (65). (iii) AmyL, a reporter of gram-positive origin, may be the best suited for use in gram-positive bacteria. However, the plate detection test results in loss of cell viability (18a), and thus its use requires replica plating (17, 18).The above-mentioned considerations led us to design a protein export reporter which would be suitable for use in a broad host range of gram-positive bacteria. The reporter we chose is based on the Staphylococcus aureus secreted nuclease (Nuc), a small, stable, monomeric, extensively studied enzyme (EC 3.1.31.1 [9]), having a mature form devoid of cysteine residues (50). Nuc is efficiently secreted by various gram-positive bacteria as an active 168-amino-acid polypeptide which may undergo subsequent proteolytic cleavage of the N-terminal 19- to 21-amino-acid propeptide to give rise to another active form, called NucA (27, 30, 31, 38, 58). The enzymatic activity test for Nuc is sensitive and nontoxic to colonies (28, 29, 50). Several features of Nuc thus make it a potentially optimal candidate for reporting protein export in gram-positive bacteria.In this study, we show that a truncated form of Nuc lacking its export signal (called ΔSPNuc) is an export-specific reporter. A shuttle vector, pFUN (for fusion to nuclease), was designed to specifically identify genes encoding exported proteins as translational fusions to ΔSPNuc. pFUN was developed and used to study protein export in Lactococcus lactis, a gram-positive microaerophilic industrial microorganism used in dairy fermentations (37). Despite the technological importance of surface and extracellular proteins in this organism, export of relatively few proteins (excluding plasmid- or transposon-encoded proteins) has been reported to date (4, 6, 12, 13, 15, 26, 40, 6062). In this work, we characterize 16 previously unknown exported L. lactis proteins. Our results confirm that ΔSPNuc is a sensitive and specific export reporter for L. lactis and potentially for other gram-positive bacteria.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号