首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

SUMMARY

The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.  相似文献   

3.
The alkenoic hydroxyacid 2-hydroxy-3-butenoic acid (vinylglycolate) specifically inhibited the phosphotransferase system in a variety of bacteria while not affecting respiration-coupled transport systems.  相似文献   

4.
Many sugars and derivatives were tested in the capillary assay for their attraction of Bacillus subtilis. The major attractants were 2-deoxy-D-glucose, D-fructose, gentiobiose, D-glucose, maltose, D-mannitol, D-mannose, N-acetylglucosamine, alpha-methyl-D-glucoside, beta-methyl-D-glucoside, N-acetylmannosamine, alpha-methyl-D-mannoside, D-sorbitol, L-sorbose, sucrose, trehalose and D-xylose. Only glucose chemotaxis was completely constitutive. Competition experiments were carried out to determine the specificities of chemoreceptors. There were 25 instances of no influence of two sugars on each other's taxis, 92 instances of one sugar interfering non-reciprocally with chemotaxis towards another and 49 instances of two sugars reciprocally competing. However, in most of the last instances, other sugars were identified that interfered with chemotaxis towards one member of the pair but not the other. Thus, nearly all sugars and related compounds appear to be detected by their own chemoreceptors, but many secondary interactions exist.  相似文献   

5.
6.
The periplasmic sensor domains GSU0582 and GSU0935 are part of methyl accepting chemotaxis proteins in the bacterium Geobacter sulfurreducens. Both contain one c-type heme group and their crystal structures revealed that these domains form swapped dimers with a PAS fold formed from the two protein chains. The swapped dimerization of these sensors is related to the mechanism of signal transduction and the formation of the swapped dimer involves significant folding changes and conformational rearrangements within each monomeric component. However, the structural changes occurring during this process are poorly understood and lack a mechanistic framework. To address this issue, we have studied the folding and stability properties of two distinct heme-sensor PAS domains, using biophysical spectroscopies. We observed substantial differences in the thermodynamic stability (ΔG = 14.6 kJ.mol−1 for GSU0935 and ΔG = 26.3 kJ.mol−1 for GSU0582), and demonstrated that the heme moiety undergoes conformational changes that match those occurring at the global protein structure. This indicates that sensing by the heme cofactor induces conformational changes that rapidly propagate to the protein structure, an effect which is directly linked to the signal transduction mechanism. Interestingly, the two analyzed proteins have distinct levels of intrinsic disorder (25% for GSU0935 and 13% for GSU0582), which correlate with conformational stability differences. This provides evidence that the sensing threshold and intensity of the propagated allosteric effect is linked to the stability of the PAS-fold, as this property modulates domain swapping and dimerization. Analysis of the PAS-domain shows that disorder segments are found either at the hinge region that controls helix motions or in connecting segments of the β-sheet interface. The latter is known to be widely involved in both intra- and intermolecular interactions, supporting the view that it''s folding and stability are at the basis of the specificity and regulation of many types of PAS-containing signaling proteins.  相似文献   

7.
The Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system consists of three components: a membrane-bound enzyme II, a soluble phosphocarrier protein (HPr), and a soluble enzyme I. The soluble enzyme I was purified by ammonium sulfate fractionation; Bio-Gel P-10 gel filtration; acid precipitation; diethylaminoethyl-Bio-Gel A; and Bio-Gel HTP column chromatography. The enzyme I was shown to be homogeneous by electrophoresis in a pH 8.9 non-sodium dodecyl sulfate gel and by isoelectric focusing. Whereas the protein moved as a single component in both the non-sodium dodecyl sulfate gel and isoelectric focusing, on sodium dodecyl sulfate gels, it moved as three subcomponents. The molecular weights of the three subunits, alpha, beta, and gamma, were 44,500, 62,000 and 64,500, respectively. The holoprotein moved as a single component, in the region of 220,000 daltons, in a Bio-Gel A 0.5-agarose column. The molar ratio of subunits was estimated to be 2alpha:1beta:1gamma. The elution characteristics on a diethylaminoethyl column at pH 7.4 and 6.8, acid precipitation data, and amino acid composition indicated that the protein is acidic. Isoelectric focusing occurred at pH 4.8. N-terminal amino acids determined by the dansyl chloride method indicated that glycine, alanine, and tyrosine are N-terminal amino acids of the three subunits. Although the protein was stable for at least 14 months at -20 degrees C, it was irreversibly inactivated by the thiol reagent N-ethyl-maleimide.  相似文献   

8.
9.
10.
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.  相似文献   

11.
12.
Mutants of bacteria belonging the genus Erwinia(Erwinia chrysanthemi andErwinia carotovora) with pleiotropic disturbances in the utilization of many substrates were obtained through chemical and transposon mutagenesis. Genetic studies revealed that these mutants had defective ptsI or ptsH genes responsible for the synthesis of common components of the phosphoenolpyruvate-dependent phosphotransferase system, enzyme I and the HPr protein, respectively. The ptsI + allele in both Erwinia species was cloned in vivo. Mapping of obtained mutations indicated that theptsIand ptsH genes ofE. chrysanthemi do not constitute a linkage group. The ptsI gene is located at 100 min of the chromosomal map, whereas theptsH gene is located at 175 min. Sequencing of a portion of theE. chrysanthemi ptsI gene showed that a product of the cloned DNA region had up to 68% homology with the N terminus of Escherichia coli enzyme I.  相似文献   

13.
The phosphotransferase system (PTS) is involved in the use of carbon sources in bacteria. Bacillus sphaericus, a bacterium with the ability to produce insecticidal proteins, is unable to use hexoses and pentoses as the sole carbon source, but it has ptsHI genes encoding the two general proteins of the PTS: enzyme I (EI) and the histidine phosphocarrier (HPr). In this work, we describe the biophysical and structural properties of HPr from B. sphaericus, HPrbs, and its affinity towards EI of other species to find out whether there is inter-species binding. Conversely to what happens to other members of the HPr family, HPrbs forms several self-associated species. The conformational stability of the protein is low, and it unfolds irreversibly during heating. The protein binds to the N-terminal domain of EI from Streptomyces coelicolor, EINsc, with a higher affinity than that of the natural partner of EINsc, HPrsc. Modelling of the complex between EINsc and HPrbs suggests that binding occurs similarly to that observed in other HPr species. We discuss the functional implications of the oligomeric states of HPrbs for the glycolytic activity of B. sphaericus, as well as a strategy to inhibit binding between HPrsc and EINsc.  相似文献   

14.
Escherichia coli cells use two distinct sensory circuits during chemotaxis towards carbohydrates. One circuit requires the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and is independent of any specific chemoreceptor, whereas the other uses a chemoreceptor-dependent sensory mechanism analogous to that used during chemotaxis towards amino acids. Work on the carbohydrate chemotaxis sensory circuit of Bacillus subtilis reported in this article indicates that the B. subtilis circuit is different from either of those used by E. coli. Our chemotactic analysis of B. subtilis strains expressing various chimeric chemoreceptors indicates that the cytoplasmic, C-terminal module of the chemoreceptor McpC acts as a sensory-input element during carbohydrate chemotaxis. Our results also indicate that PTS-mediated carbohydrate transport, but not carbohydrate metabolism, is required for production of a chemotactic signal. We propose a model in which PTS-transport-induced chemotactic signals are transmitted to the C-terminal module of McpC for control of chemotaxis towards PTS carbohydrates.  相似文献   

15.
Biochemical consequences of mutational damage to common components of the Erwinia phosphoenolpyruvate-dependent phosphotransferase system (the HPr protein and enzyme I) were studied. The transport of glucose, mannose, fructose, and mannitol inErwinia was shown to require a preliminary induction of proteins of the phosphotransferase system. A drastic decrease in the rate of the transport of these carbohydrates was observed in ptsI and ptsH mutants. A disturbance in the common components suppresses the synthesis of inducible enzymes (-galactosidase, complexes of pectolate lyases and cellulases) and renders it resistant to catabolite repression by glucose, but mutants were shown to retain intracellular cAMP content. Erwinia mutants devoid of common components of the system lack phytopathogenic features. The appearance of an intact ptsI allele in the cell completely repaired pleiotropic disturbances in these mutants.  相似文献   

16.
Summary The minicell producing strain Bacillus subtilis IA292 was transformed with plasmids encoding the Bacillus enzymes -glucanase, -amylase and neutral protease. Purified minicells were shown to be free of detectable proteolytic activity. Minicells containing plasmids were found to synthesise all three enzymes internally, but evidence of secretion was only observed in the unique case of neutral protease secretion by minicells prepared from cultures grown in BHI medium.  相似文献   

17.
In the mixed culture of Azotobacter vinelandii and Bacillus subtilis, chemotaxis of Azotobacter to glucose remained unchanged, while that of bacilli decreased. Microelectrophoresis demonstrated adhesion of the A. vinelandii polysaccharide on the surface of B. subtilis cells. In the presence of 0.05–1.0 g/L of this biopolymer, the chemotaxis of bacilli to glucose decreased 2.6 to 6.8 times. A. vinelandii polysaccharide molecules adherent on the surface of B. subtilis cells were suggested to block bacillary chemotactic receptors, resulting in a decrease in their directed motility in the mixed culture.  相似文献   

18.
Esat-6 protein secretion systems (ESX or Ess) are required for the virulence of several human pathogens, most notably Mycobacterium tuberculosis and Staphylococcus aureus. These secretion systems are defined by a conserved FtsK/SpoIIIE family ATPase and one or more WXG100 family secreted substrates. Gene clusters coding for ESX systems have been identified amongst many organisms including the highly tractable model system, Bacillus subtilis. In this study, we demonstrate that the B. subtilis yuk/yue locus codes for a nonessential ESX secretion system. We develop a functional secretion assay to demonstrate that each of the locus gene products is specifically required for secretion of the WXG100 virulence factor homolog, YukE. We then employ an unbiased approach to search for additional secreted substrates. By quantitative profiling of culture supernatants, we find that YukE may be the sole substrate that depends on the FtsK/SpoIIIE family ATPase for secretion. We discuss potential functional implications for secretion of a unique substrate.  相似文献   

19.
Integration of a plasmid carrying the TnBP3 transposon of Bordetella pertussisinto the chromosome of Escherichia coliand transpositions of the integrated structure within a chromosome in the wild-type and mutant cells ptsHdevoid of the major Hpr protein of the phosphoenolpyruvate-dependent phosphotransferase system were studied. When transposed to a new chromosome site, the integrated structure was precisely (or almost precisely) excised from the metYgene sequence, which resulted in restoration of the Met+phenotype. The integration and transposition events were only observed in the E. colicells carrying the ptsH +allele. The ptsHmutations inhibited integration and intramolecular transposition, which were restored after phenotypic or genetic suppression of the ptsHmutation. The intensity of the processes studied were suggested to depend on the integrity of a chain that ensures transferring of the phosphoryl residue by proteins of the phosphotransferase system in E. coliK12.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号