首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delineation of a Carcinogenic Helicobacter pylori Proteome   总被引:1,自引:0,他引:1  
Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, yet only a fraction of infected persons ever develop cancer. The extensive genetic diversity inherent to this pathogen has precluded comprehensive analyses of constituents that mediate carcinogenesis. We previously reported that in vivo adaptation of a non-carcinogenic H. pylori strain endowed the output derivative with the ability to induce adenocarcinoma, providing a unique opportunity to identify proteins selectively expressed by an oncogenic H. pylori strain. Using a global proteomics DIGE/MS approach, a novel missense mutation of the flagellar protein FlaA was identified that affects structure and function of this virulence-related organelle. Among 25 additional differentially abundant proteins, this approach also identified new proteins previously unassociated with gastric cancer, generating a profile of H. pylori proteins to use in vaccine development and for screening persons infected with strains most likely to induce severe disease.Helicobacter pylori is a Gram-negative bacterial species that selectively colonizes gastric epithelium and induces an inflammatory response within the stomach that persists for decades (1, 2). Biological costs incurred by the long term relationship between H. pylori and humans include an increased risk for distal gastric adenocarcinoma (38), and eradication of this pathogen significantly decreases cancer risk among infected individuals without premalignant lesions (9). However, only a fraction of colonized persons ever develop neoplasia, and enhanced cancer risk is related to H. pylori strain differences, inflammatory responses governed by host genetic diversity, and/or specific interactions between host and microbial determinants (10).H. pylori strains are remarkably diverse (1115), and the genetic composition of strains can change over time within an individual colonized stomach (16, 17). Despite this diversity, several genetic loci have been identified that augment disease risk. The cag pathogenicity island encodes a type IV bacterial secretion system, and the product of the terminal gene in this island, CagA, is translocated into host epithelial cells by the cag secretion system following adherence (1820). Within the host cell, CagA undergoes Src- and Abl-dependent tyrosine phosphorylation (21) and activates the eukaryotic phosphatase SHP-2, leading to dephosphorylation of host cell proteins and cellular morphological changes (1921). CagA also dysregulates β-catenin signaling (22, 23) and apical-junctional complexes (24), events linked to increased cell motility and oncogenic transformation in several models (25, 26). Another H. pylori constituent linked to gastric cancer is the cytotoxin VacA, encoded by the gene vacA, which is present in virtually all H. pylori strains (27). In vitro, VacA induces the formation of intracellular vacuoles (27) and can induce apoptosis (28), and vacuolating activity is significantly associated with the presence of the cag pathogenicity island (3).Approximately 20% of H. pylori bind to gastric epithelial cells in vivo (29), and sequence analysis has revealed that the H. pylori genome contains an unusually high number of ORFs relative to its genome size that are predicted to encode outer membrane proteins (15). BabA, a member of a family of highly conserved outer membrane proteins and encoded by the strain-specific gene babA2, binds the Lewisb histo-blood group antigen on gastric epithelial cells (30, 31), and H. pylori babA2+ strains are associated with an increased risk for gastric cancer (30). However, not all persons infected with cag+ babA2+ toxigenic strains develop gastric cancer, indicating that additional H. pylori constituents are important in carcinogenesis.We recently identified a strain of H. pylori, 7.13, that reproducibly induces gastric cancer in two rodent models of gastritis, Mongolian gerbils and hypergastrinemic INS-GAS mice (22). This strain was derived via in vivo adaptation of a clinical H. pylori strain, B128, which induces inflammation, but not cancer, in rodent gastric mucosa. The oncogenic 7.13 phenotype is not due to an enhanced ability of strain 7.13 to colonize as there were no significant differences in gastric colonization density or efficiency between strains B128 and 7.13 as assessed by either quantitative culture or histology. However, carcinogenic strain 7.13 binds more avidly to gastric epithelial cells in vitro than does strain B128, suggesting that the two strains may variably express different outer membrane proteins.To define proteins that may mediate the development of H. pylori-induced gastric cancer, we performed two-dimensional (2D)1 DIGE coupled with MS to identify differentially abundant membrane-associated and cytosolic proteins from non-carcinogenic H. pylori strain B128 and its carcinogenic derivative, strain 7.13 (22). DIGE/MS is a well established proteomics technology based on conventional 2D gel protein separations whereby prelabeling samples with spectrally resolvable fluorescent dyes and multiplexing samples onto a series of gels that contain a mixture of all experimental samples (internal standard) provide quantitative data on abundance changes for thousands of intact proteins from multiple experimental conditions, each measured in replicate for statistical confidence (3236). Techniques including DIGE/MS have recently been utilized to robustly define differences in protein abundance profiles between bacterial strains and to compare expression patterns of proteins harvested from bacteria maintained under different growth conditions (37, 38).Utilizing DIGE/MS, we detected and identified 26 proteins with statistically significant differences between strains B128 and 7.13, including a novel cysteine-to-arginine mutation in the H. pylori flagellar protein FlaA. We demonstrate that this FlaA mutation results in structural and functional aberrations. Application of this technique to two genetically related bacterial strains that induce distinct phenotypes also identified several novel candidate H. pylori virulence factors, providing a framework for studies targeting the pathogenesis of microbially induced cancer.  相似文献   

2.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

3.
4.
5.
The metabolism of indole-3-acetic acid (IAA) was investigated in 14-d-old Arabidopsis plants grown in liquid culture. After ruling out metabolites formed as an effect of nonsterile conditions, high-level feeding, and spontaneous interconversions, a simple metabolic pattern emerged. Oxindole-3-acetic acid (OxIAA), OxIAA conjugated to a hexose moiety via the carboxyl group, and the conjugates indole-3-acetyl aspartic acid (IAAsp) and indole-3-acetyl glutamate (IAGlu) were identified by mass spectrometry as primary products of IAA fed to the plants. Refeeding experiments demonstrated that none of these conjugates could be hydrolyzed back to IAA to any measurable extent at this developmental stage. IAAsp was further oxidized, especially when high levels of IAA were fed into the system, yielding OxIAAsp and OH-IAAsp. This contrasted with the metabolic fate of IAGlu, since that conjugate was not further metabolized. At IAA concentrations below 0.5 μm, most of the supplied IAA was metabolized via the OxIAA pathway, whereas only a minor portion was conjugated. However, increasing the IAA concentrations to 5 μm drastically altered the metabolic pattern, with marked induction of conjugation to IAAsp and IAGlu. This investigation used concentrations for feeding experiments that were near endogenous levels, showing that the metabolic pathways controlling the IAA pool size in Arabidopsis are limited and, therefore, make good targets for mutant screens provided that precautions are taken to avoid inducing artificial metabolism.The plant hormone IAA is an important signal molecule in the regulation of plant development. Its central role as a growth regulator makes it necessary for the plant to have mechanisms that strictly control its concentration. The hormone is believed to be active primarily as the free acid, and endogenous levels are controlled in vivo by processes such as synthesis, oxidation, and conjugation. IAA has been shown to form conjugates with sugars, amino acids, and small peptides. Conjugates are believed to be involved in IAA transport, in the storage of IAA for subsequent use, in the homeostatic control of the pool of the free hormone, and as a first step in the catabolic pathways (Cohen and Bandurski, 1978; Nowacki and Bandurski, 1980; Tuominen et al., 1994; Östin et al., 1995; Normanly, 1997). It is generally accepted that in some species conjugated IAA is the major source of free IAA during the initial stages of seed germination (Ueda and Bandurski, 1969; Sandberg et al., 1987; Bialek and Cohen, 1989), and there is also evidence that in some plants (but not all; see Bialek et al., 1992), the young seedling is entirely dependent on the release of free IAA from conjugated pools until the plant itself is capable of de novo synthesis (Epstein et al., 1980; Sandberg et al., 1987).The function of conjugated IAA during vegetative growth is somewhat less clear. It has been shown that conjugated IAA constitutes as much as 90% of the total IAA in the plant during vegetative growth (Normanly, 1997). However, the role of the IAA conjugates at this stage of the plant''s life cycle remains unknown. Analysis of endogenous IAA conjugates in vegetative tissues has revealed the presence of a variety of different compounds, including indole-3-acetyl-inositol, indole-3-acetyl-Ala, IAAsp, and IAGlu (Anderson and Sandberg, 1982; Cohen and Baldi, 1983; Chisnell, 1984; Cohen and Ernstsen, 1991; Östin et al., 1992). Studies of vegetative tissues have indicated that IAAsp, one of the major conjugates in many plants, is the first intermediate in an irreversible deactivation pathway (Tsurumi and Wada, 1986; Tuominen et al., 1994; Östin, 1995). Another mechanism that is believed to be involved in the homeostatic control of the IAA pool is catabolism by direct oxidation of IAA to OxIAA, which has been shown to occur in several plant species (Reinecke and Bandurski, 1983; Ernstsen et al., 1987).One area in the study of IAA metabolism in which our knowledge is increasing is the analysis of the homeostatic controls of IAA levels in plants. It has been possible, for instance, to increase the levels of IAA in transgenic plants expressing iaaM and iaaH genes from Agrobacterium tumefaciens. Analysis of these transgenic plants has indicated that plants have several pathways that can compensate for the increased production of IAA (Klee et al., 1987; Sitbon, 1992). It is expected that future studies using now-available genes will provide further insight into IAA metabolism. For example, a gene in maize encoding IAA-Glc synthetase has been identified, and several genes (including ILR1, which may be involved in hydrolysis of the indole-3-acetyl-Leu conjugate) have been cloned from Arabidopsis (Szerszen et al., 1994; Bartel and Fink, 1995). Furthermore, Chou et al. (1996) identified a gene that hydrolyzes the conjugate IAAsp to free IAA in the bacterium Enterobacter aggloremans.Because of its small genome size, rapid life cycle, and the ease of obtaining mutants, Arabidopsis is increasingly used as a genetic model system to investigate various aspects of plant growth and development. IAA signal transduction is also being investigated intensively in Arabidopsis in many laboratories (Leyser, 1997). Mutants with altered responses to externally added auxins or IAA conjugates have been identified in Arabidopsis. The identified mutants are either signal transduction mutants such as axr1-4 (Lincoln et al., 1990), or have mutations in genes involved in auxin uptake or transport, such as aux1 and pin1 (Okada et al., 1991; Bennett et al., 1996). A few mutants that are unable to regulate IAA levels or are unable to hydrolyze IAA conjugates, sur1-2 and ilr1, respectively, have also been identified (Bartel and Fink, 1995; Boerjan et al., 1995). To our knowledge, no mutant that is auxotrophic for IAA has been identified to date, which may reflect the redundancy in IAA biosynthetic pathways or the lethality of such mutants.In spite of the work reported thus far, many aspects of the metabolism of IAA in Arabidopsis require further investigation, because few details of the processes involved in IAA regulation are known. This lack of knowledge puts severe constraints on genetic analysis of IAA metabolism in Arabidopsis. For example, it is essential to have prior knowledge of IAA metabolism to devise novel and relevant screens with which to identify mutants of IAA metabolism. We have sought to address this issue by identifying the metabolic pathways involved in catabolism and conjugation under conditions that minimally perturb physiological processes. In this investigation we studied the conjugation and catabolic pattern of IAA by supplying relatively low levels of labeled IAA and identifying the catabolites and conjugates by MS. Different feeding systems were tested to optimize the application of IAA and to avoid irregularities in metabolism attributable to culturing, feeding conditions, or microbial activity. It is well documented that IAA metabolism is altered according to the amount of exogenous auxin applied; therefore, we placed special emphasis on distinguishing between catabolic routes that occur at near-physiological concentrations and those that occur at the high auxin concentrations commonly used in mutant screens.  相似文献   

6.
7.
8.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Encapsulated Klebsiella pneumoniae is the predominant causative agent of pyogenic liver abscess, an emerging infectious disease that often complicates metastatic meningitis or endophthalmitis. The capsular polysaccharide on K. pneumoniae surface was determined as the key to virulence. Although the regulation of capsular polysaccharide biosynthesis is largely unclear, it was found that protein-tyrosine kinases and phosphatases are involved. Therefore, the identification and characterization of such kinases, phosphatases, and their substrates would advance our knowledge of the underlying mechanism in capsule formation and could contribute to the development of new therapeutic strategies. Here, we analyzed the phosphoproteome of K. pneumoniae NTUH-K2044 with a shotgun approach and identified 117 unique phosphopeptides along with 93 in vivo phosphorylated sites corresponding to 81 proteins. Interestingly, three of the identified tyrosine phosphorylated proteins, namely protein-tyrosine kinase (Wzc), phosphomannomutase (ManB), and undecaprenyl-phosphate glycosyltransferase (WcaJ), were found to be distributed in the cps locus and thus were speculated to be involved in the converging signal transduction of capsule biosynthesis. Consequently, we decided to focus on the lesser studied ManB and WcaJ for mutation analysis. The capsular polysaccharides of WcaJ mutant (WcaJY5F) were dramatically reduced quantitatively, and the LD50 increased by 200-fold in a mouse peritonitis model compared with the wild-type strain. However, the capsular polysaccharides of ManB mutant (ManBY26F) showed no difference in quantity, and the LD50 increased by merely 6-fold in mice test. Our study provided a clear trend that WcaJ tyrosine phosphorylation can regulate the biosynthesis of capsular polysaccharides and result in the pathogenicity of K. pneumoniae NTUH-K2044.Protein phosphorylation is one of the most biologically relevant and ubiquitous post-translational modifications in both eukaryotic and prokaryotic organisms. It is best known that protein phosphorylation is a reversible enzyme-catalyzed process that is controlled by various kinases and phosphatases. The aberrant functions often result in irregular protein phosphorylation and ultimately lead to serious disease states such as malignant transformation, immune disorders, and pathogenic infections in mammals (1, 2). Recently, accumulating evidences suggest that Ser/Thr/Tyr phosphorylations also contribute to regulate a diverse range of cellular responses and physiological processes in prokaryotes (1). Among them, tyrosine phosphorylation in encapsulated bacteria has been discovered to play key roles in capsular polysaccharide (CPS1; K antigen) biosynthesis, which leads to virulence (3, 4). This thick layer of exopolysaccharide on many pathogenic bacteria can act as a physical boundary to evade phagocytosis and complement-mediated killing and further inhibit complement activation of the host (1, 5, 6).In 1996, Acinetobacter johnsonii protein-tyrosine kinase (Ptk) was first discovered and categorized under the bacterial protein-tyrosine kinase (BY-kinase) family (1, 7, 8). Shortly after, its function in bacterial exopolysaccharide production and transport was characterized (1, 7, 8). From then on, many more bacterial tyrosine kinases such as Wzc of Escherichia coli (1, 9) and EpsB of Pseudomonas solanacearum (10, 11) were found to possess this conserved property; deletion of such tyrosine kinases will result in the loss of exopolysaccharide production (12). Therefore, several experiments were conducted to investigate the role of the downstream substrates of the tyrosine kinases in different strains of bacteria, and some targeted proteins were found to participate in the exopolysaccharide anabolism (13, 14). These findings demonstrated a direct relationship between bacterial tyrosine phosphorylation and exopolysaccharide biosynthesis that was directly reflected in the strain virulence.In the past, the functional roles of the critical components involved in protein phosphorylation were defined by basic biochemical and genetic approaches (1). However, there exists a salient gap between the growing number of identified protein-tyrosine kinases/phosphatases and the relative paucity of protein substrates characterized to date. Genomic sequence analyses and advanced high resolution/high accuracy MS systems with vastly improved phosphopeptide enrichment strategies are among the two key enabling technologies that allow a high efficiency identification of the scarcely detectable site-specific phosphorylations in bacterial systems (15). Mann et al. (16) were the first to initiate a systematic study of the phosphoproteome of B. subtilis in 2007 followed by similar site-specific phosphoproteomics analyses of E. coli (17), Lactococcus lactis (18), and Halobacterium salinarum (19). These pioneering works have since set the foundation in bacterial phosphoproteomics but have not been specifically carried out to address a particular biological issue of causal relevance to virulence or pathogenesis.Klebsiella pneumoniae is a Gram-negative, non-motile, facultative anaerobic, and rod-shaped bacterium. It is commonly found in water and soil (20) as well as on plants (21) and mucosal surfaces of mammals, such as human, horse, and swine (22, 23). It was demonstrated that CPS on the surface of K. pneumoniae is the prime factor of virulence and toxicity in causing pyogenic liver abscess (PLA), a common intra-abdominal infection with a high 10–30% mortality rate worldwide (2429). There are also variations in virulence in regard to different capsular serotypes; K1 and K2 were found to be especially pathogenic in causing PLA in a mouse model (30) compared with other serotypes, which show little or no effect (3134). The K. pneumoniae NTUH-K2044 (K2044) strain, encapsulated with K1 antigen (35), was isolated from clinical K. pneumoniae liver abscess patients. It has become an important emerging pathogen (36) because it usually complicates metastatic septic endophthalmitis and irreversible central nervous system infections independent of host underlying diseases (30, 34). The transmission rate is high (37), and it often rapidly leads to outbreaks of community-acquired infections, such as bacteremia, nosocomial pneumonia, and sepsis, common in immunocompromised individuals (38).In this study, we wanted to prove that the biosynthesis of CPS is mediated through tyrosine phosphorylation of a subset of proteins. An MS-based systematic phosphoproteomics analysis was conducted on K2044 to identify tyrosine phosphorylated proteins that are also associated with CPS biosynthesis. We further validated the relationship between tyrosine phosphorylation on those proteins and virulence of K2044 by site-directed mutagenesis, CPS quantification, serum killing, and mouse lethality assay.  相似文献   

17.
N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), which transfer an acetyl group from acetyl coenzyme A to the alpha amino group of a nascent polypeptide. Nt-acetylation has emerged as an important protein modifier, steering protein degradation, protein complex formation and protein localization. Very recently, it was reported that some human proteins could carry a propionyl group at their N-terminus. Here, we investigated the generality of N-terminal propionylation by analyzing its proteome-wide occurrence in yeast and we identified 10 unique in vivo Nt-propionylated N-termini. Furthermore, by performing differential N-terminome analysis of a control yeast strain (yNatA), a yeast NatA deletion strain (yNatAΔ) or a yeast NatA deletion strain expressing human NatA (hNatA), we were able to demonstrate that in vivo Nt-propionylation of several proteins, displaying a NatA type substrate specificity profile, depended on the presence of either yeast or human NatA. Furthermore, in vitro Nt-propionylation assays using synthetic peptides, propionyl coenzyme A, and either purified human NATs or immunoprecipitated human NatA, clearly demonstrated that NATs are Nt-propionyltransferases (NPTs) per se. We here demonstrate for the first time that Nt-propionylation can occur in yeast and thus is an evolutionarily conserved process, and that the NATs are multifunctional enzymes acting as NPTs in vivo and in vitro, in addition to their main role as NATs, and their potential function as lysine acetyltransferases (KATs) and noncatalytic regulators.Modifications greatly increases a cell''s proteome diversity confined by the natural amino acids. As more than 80% of human proteins, more than 70% of plant and fly proteins and more than 60% of yeast proteins are N-terminally acetylated (Nt-acetylated),1 this modification represents one of the most common protein modifications in eukaryotes (15). Recent studies have pointed to distinct functional consequences of Nt-acetylation (6): creating degradation signals recognized by a ubiquitin ligase of a new branch of the N-end rule pathway (7), preventing translocation across the endoplasmic reticulum membrane (8), and mediating protein complex formation (9). Nt-acetylation further appears to be essential for life in higher eukaryotes; for instance, a mutation in the major human N-terminal acetyltransferase (NAT), hNatA, was recently shown to be the cause of Ogden syndrome by which male infants are underdeveloped and die at infancy (10). Unlike lysine acetylation, Nt-acetylation is considered an irreversible process, and further, to mainly occur on the ribosome during protein synthesis (1115). In yeast and humans, three NAT complexes are responsible for the majority of Nt-acetylation; NatA, NatB and NatC, each of which has a defined substrate specificity (16). NatA acetylates Ser-, Ala-, Gly-, Thr-, Val- and Cys- N-termini generated on removal of the initiator methionine (iMet) (1, 1719). NatB and NatC acetylate N-termini in which the iMet is followed by an acidic (2023) or a hydrophobic residue respectively (2426). Naa40p/NatD was shown to acetylate the Ser-starting N-termini of histones H2A and H4 (27, 28). NatE, composed of the catalytic Naa50p (Nat5p) has substrate specificity toward iMet succeeded by a hydrophobic amino acid (29, 30). As largely the same Nt-acetylation patterns are found in yeast and humans, it was believed that the NAT-machineries were conserved in general (31). However, the recently discovered higher eukaryotic specific NAT, Naa60p/NatF, was found to display a partially distinct substrate specificity in part explaining the higher degree of Nt-acetylation in higher versus lower eukaryotes (4).Human NatA is composed of two main subunits: the catalytic subunit hNaa10p and the auxiliary subunit, hNaa15p that is presumably responsible for anchoring the complex to the ribosome (14, 19). The chaperone-like HYPK protein is also stably associated with the NatA subunits and may be essential for efficient NatA activity (32). In addition, hNaa50p was shown to be physically associated with hNatA, however it is believed not to affect NatA activity (14, 33, 34). hNaa50p was also shown to exhibit Nε-acetyltransferase (KAT) activity (29), however, the structure of hNaa50p with its peptide substrate bound strongly indicates that the peptide binding pocket is specifically suited to accommodate N-terminal peptides, as opposed to lysine residues (35). The human NatA subunits are associated with ribosomes, but interestingly, significant fractions are also nonribosomal (19, 30, 32). Of further notice, the catalytic subunits, hNaa10p and hNaa50p, were also found to partially act independently of the hNatA complex (30, 36).Recent studies have identified novel in vivo acyl modifications of proteins. Mass spectrometry data of affinity-enriched acetyllysine-containing peptides from HeLa cells showed the presence of propionylated and butyrylated lysines in histone H4 peptides (37). Similar analyses also showed the presence of propionylated lysines in p53, p300 and CREB-binding protein (38) besides the yeast histones H2B, H3 and H4 (39). Propionylated or butyrylated residues differ by only one or two extra methyl moieties as compared with their acetylated counterparts, thereby adding more hydrophobicity and bulkiness to the affected residue. To date, no distinct propionyl- or butyryltransferases responsible for these modifications have been identified. However, by using propionyl coenzyme A (Prop-CoA) or butyryl coenzyme A (But-CoA) as donors in the enzyme reaction, it was shown that some of the previously characterized lysine acetyltransferases (KATs) are able to respectively catalyze propionylation and butyrylation of lysine residues both in vitro (37, 4042) and in vivo (38, 41). Similarly, it has been shown that lysine deacetylases also are capable of catalyzing depropionylation (40, 41, 43, 44) and debutyrylation (44) (see review (45)).Interestingly, mass spectrometry data also suggested that propionylated N-termini are present in human cell lines (46, 47). Until today, an N-terminal propionyl transferase (NPT) catalyzing N-terminal propionylation (Nt-propionylation) has to our knowledge not been identified.In this study, we hypothesized that NATs might have the ability to act as NPTs. In vitro experiments using purified hNaa10p, hNaa50p or immunoprecipitated human NatA complex indeed confirmed their intrinsic capacity to catalyze Nt-propionylation toward synthetic peptides. NatA was also found capable of Nt-butyrylation in vitro. By means of N-terminomics, we further investigated the presence of yeast Nt-propionylated proteins in vivo. Indeed, we found evidence for Nt-propionylation being a naturally occurring modification in yeast. Interestingly, in a yeast strain lacking NatA, we observed a loss in Nt-propionylation and Nt-acetylation for several NatA substrates, as compared with a control yeast strain expressing endogenous NatA or a strain ectopically expressing hNatA. Thus, besides acting as NATs, yeast and human NatA can act as NPTs and we thus demonstrate for the first time that NATs have the capacity of both acetylating and propionylating protein N-termini in vivo and in vitro.  相似文献   

18.
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells; however, its extent and function in Mtb remain unexplored. Here, we performed a global succinylome analysis of the virulent Mtb strain H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the central metabolism pathway. Site-specific mutations showed that succinylation is a negative regulatory modification on the enzymatic activity of acetyl-CoA synthetase. Molecular dynamics simulations demonstrated that succinylation affects the conformational stability of acetyl-CoA synthetase, which is critical for its enzymatic activity. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a desuccinylase of acetyl-CoA synthetase in in vitro assays. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and diverse processes in Mtb. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this life-threatening pathogen.Post-translational modifications (PTMs)1 are complex and fundamental mechanisms modulating diverse protein properties and functions, and have been associated with almost all known cellular pathways and disease processes (1, 2). Among the hundreds of different PTMs, acylations at lysine residues, such as acetylation (36), malonylation (7, 8), crotonylation (9, 10), propionylation (1113), butyrylation (11, 13), and succinylation (7, 1416) are crucial for functional regulations of many prokaryotic and eukaryotic proteins. Because these lysine PTMs depend on the acyl-CoA metabolic intermediates, such as acetyl-CoA (Ac-CoA), succinyl-CoA, and malonyl-CoA, lysine acylation could provide a mechanism to respond to changes in the energy status of the cell and regulate energy metabolism and the key metabolic pathways in diverse organisms (17, 18).Among these lysine PTMs, lysine succinylation is a highly dynamic and regulated PTM defined as transfer of a succinyl group (-CO-CH2-CH2-CO-) to a lysine residue of a protein molecule (8). It was recently identified and comprehensively validated in both bacterial and mammalian cells (8, 14, 16). It was also identified in core histones, suggesting that lysine succinylation may regulate the functions of histones and affect chromatin structure and gene expression (7). Accumulating evidence suggests that lysine succinylation is a widespread and important PTM in both eukaryotes and prokaryotes and regulates diverse cellular processes (16). The system-wide studies involving lysine-succinylated peptide immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS/MS) have been employed to analyze the bacteria (E. coli) (14, 16), yeast (S. cerevisiae), human (HeLa) cells, and mouse embryonic fibroblasts and liver cells (16, 19). These succinylome studies have generated large data sets of lysine-succinylated proteins in both eukaryotes and prokaryotes and demonstrated the diverse cellular functions of this PTM. Notably, lysine succinylation is widespread among diverse mitochondrial metabolic enzymes that are involved in fatty acid metabolism, amino acid degradation, and the tricarboxylic acid cycle (19, 20). Thus, lysine succinylation is reported as a functional PTM with the potential to impact mitochondrial metabolism and coordinate different metabolic pathways in human cells and bacteria (14, 1922).Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a major cause of mortality worldwide and claims more human lives annually than any other bacterial pathogen (23). About one third of the world''s population is infected with Mtb, which leads to nearly 1.3 million deaths and 8.6 million new cases of TB in 2012 worldwide (24). Mtb remains a major threat to global health, especially in the developing countries. Emergence of multidrug resistant (MDR) and extensively drug-resistant (XDR) Mtb, and also the emergence of co-infection between TB and HIV have further worsened the situation (2527). Among bacterial pathogens, Mtb has a distinctive life cycle spanning different environments and developmental stages (28). Especially, Mtb can exist in dormant or active states in the host, leading to asymptomatic latent TB infection or active TB disease (29). To achieve these different physiologic states, Mtb developed a mechanism to sense diverse signals from the host and to coordinately regulate multiple cellular processes and pathways (30, 31). Mtb has evolved its metabolic network to both maintain and propagate its survival as a species within humans (3235). It is well accepted that metabolic network is a central mediator and defining feature of the pathogenicity of Mtb (23, 3638). Knowledge of the regulation of metabolic pathways used by Mtb during infection is therefore important for understanding its pathogenicity, and can also guide the development of novel drug therapies (39). On the other hand, increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells (14, 1922). It is tempting to speculate that lysine succinylation may play an important regulatory role in metabolic processes in Mtb. However, to the best of our knowledge, no succinylated protein in Mtb has been identified, presenting a major obstacle to understand the regulatory roles of lysine succinylation in this life-threatening pathogen.In order to fill this gap in our knowledge, we have initiated a systematic study of the identities and functional roles of the succinylated protein in Mtb. Because Mtb H37Rv is the first sequenced Mtb strain (40) and has been extensively used for studies in dissecting the roles of individual genes in pathogenesis (41), it was selected as a test case. We analyzed the succinylome of Mtb H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and render particular enrichment to metabolic process. A large proportion of the succinylation sites are present on proteins in the central metabolism pathway. We further dissected the regulatory role of succinylation on acetyl-CoA synthetase (Acs) via site-specific mutagenesis analysis and molecular dynamics (MD) simulations showed that reversible lysine succinylation could inhibit the activity of Acs. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a deacetylase and as a desuccinylase of Acs in in vitro assays. Together, our findings provide significant insights into the range of functions regulated by lysine succinylation in Mtb.  相似文献   

19.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

20.
The Dbf4-Cdc7 kinase (DDK) is required for the activation of the origins of replication, and DDK phosphorylates Mcm2 in vitro. We find that budding yeast Cdc7 alone exists in solution as a weakly active multimer. Dbf4 forms a likely heterodimer with Cdc7, and this species phosphorylates Mcm2 with substantially higher specific activity. Dbf4 alone binds tightly to Mcm2, whereas Cdc7 alone binds weakly to Mcm2, suggesting that Dbf4 recruits Cdc7 to phosphorylate Mcm2. DDK phosphorylates two serine residues of Mcm2 near the N terminus of the protein, Ser-164 and Ser-170. Expression of mcm2-S170A is lethal to yeast cells that lack endogenous MCM2 (mcm2Δ); however, this lethality is rescued in cells harboring the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Mcm2 is required for cell growth.The Cdc7 protein kinase is required throughout the yeast S phase to activate origins (1, 2). The S phase cyclin-dependent kinase also activates yeast origins of replication (35). It has been proposed that Dbf4 activates Cdc7 kinase in S phase, and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6). However, it is not known how Dbf4-Cdc7 (DDK)2 acts during S phase to trigger the initiation of DNA replication. DDK has homologs in other eukaryotic species, and the role of Cdc7 in activation of replication origins during S phase may be conserved (710).The Mcm2-7 complex functions with Cdc45 and GINS to unwind DNA at a replication fork (1115). A mutation of MCM5 (mcm5-bob1) bypasses the cellular requirements for DBF4 and CDC7 (16), suggesting a critical physiologic interaction between Dbf4-Cdc7 and Mcm proteins. DDK phosphorylates Mcm2 in vitro with proteins purified from budding yeast (17, 18) or human cells (19). Furthermore, there are mutants of MCM2 that show synthetic lethality with DBF4 mutants (6, 17), suggesting a biologically relevant interaction between DBF4 and MCM2. Nevertheless, the physiologic role of DDK phosphorylation of Mcm2 is a matter of dispute. In human cells, replacement of MCM2 DDK-phosphoacceptor residues with alanines inhibits DNA replication, suggesting that Dbf4-Cdc7 phosphorylation of Mcm2 in humans is important for DNA replication (20). In contrast, mutation of putative DDK phosphorylation sites at the N terminus of Schizosaccharomyces pombe Mcm2 results in viable cells, suggesting that phosphorylation of S. pombe Mcm2 by DDK is not critical for cell growth (10).In budding yeast, Cdc7 is present at high levels in G1 and S phase, whereas Dbf4 levels peak in S phase (18, 21, 22). Furthermore, budding yeast DDK binds to chromatin during S phase (6), and it has been shown that Dbf4 is required for Cdc7 binding to chromatin in budding yeast (23, 24), fission yeast (25), and Xenopus (9). Human and fission yeast Cdc7 are inert on their own (7, 8), but Dbf4-Cdc7 is active in phosphorylating Mcm proteins in budding yeast (6, 26), fission yeast (7), and human (8, 10). Based on these data, it has been proposed that Dbf4 activates Cdc7 kinase in S phase and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6, 9, 18, 2124). However, a mechanistic analysis of how Dbf4 activates Cdc7 has not yet been accomplished. For example, the multimeric state of the active Dbf4-Cdc7 complex is currently disputed. A heterodimer of fission yeast Cdc7 (Hsk1) in complex with fission yeast Dbf4 (Dfp1) can phosphorylate Mcm2 (7). However, in budding yeast, oligomers of Cdc7 exist in the cell (27), and Dbf4-Cdc7 exists as oligomers of 180 and 300 kDa (27).DDK phosphorylates the N termini of human Mcm2 (19, 20, 28), human Mcm4 (10), budding yeast Mcm4 (26), and fission yeast Mcm6 (10). Although the sequences of the Mcm N termini are poorly conserved, the DDK sites identified in each study have neighboring acidic residues. The residues of budding yeast Mcm2 that are phosphorylated by DDK have not yet been identified.In this study, we find that budding yeast Cdc7 is weakly active as a multimer in phosphorylating Mcm2. However, a low molecular weight form of Dbf4-Cdc7, likely a heterodimer, has a higher specific activity for phosphorylation of Mcm2. Dbf4 or DDK, but not Cdc7, binds tightly to Mcm2, suggesting that Dbf4 recruits Cdc7 to Mcm2. DDK phosphorylates two serine residues of Mcm2, Ser-164 and Ser-170, in an acidic region of the protein. Mutation of Ser-170 is lethal to yeast cells, but this phenotype is rescued by the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Ser-170 of Mcm2 is required for budding yeast growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号